IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923008056.html
   My bibliography  Save this article

Impulsive consensus of nonlinear multi-agent systems with input and state saturation constraints

Author

Listed:
  • Jiang, Xiaowei
  • Zhang, Ni
  • Li, Bo
  • Zhang, Xianhe

Abstract

This work focus on the study of consensus problems of nonlinear second-order multi-agent system (MAS). By fully taking performance difference constrained by the locations of communication channel into account, and in view that impulsive control scheme can reduce control costs in some degree, input-saturation and state-saturation are integrated into the design of impulsive consensus control protocol, respectively. By doing that, some sufficient conditions that guarantee the consensus of nonlinear MAS are derived by using Lyapunov stability theory. Finally, by giving two examples, some simulation examples are presented to verify the theoretical results.

Suggested Citation

  • Jiang, Xiaowei & Zhang, Ni & Li, Bo & Zhang, Xianhe, 2023. "Impulsive consensus of nonlinear multi-agent systems with input and state saturation constraints," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008056
    DOI: 10.1016/j.chaos.2023.113904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yang & Wang, Zhen & Chen, Mingshu & Kong, Lingyun, 2021. "Predefined-time sliding mode formation control for multiple autonomous underwater vehicles with uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Wu, Hongjuan & Li, Chuandong & He, Zhilong & Wang, Yinuo & He, Yingying, 2021. "Lag synchronization of nonlinear dynamical systems via asymmetric saturated impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Belkacem Kada & Ahmed S. A. Balamesh & Khalid A. Juhany & Ibraheem M. Al-Qadi, 2020. "Distributed cooperative control for nonholonomic wheeled mobile robot systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(9), pages 1528-1541, July.
    5. Zhang, Lingzhong & Lu, Jianquan & Jiang, Bangxin & Huang, Chi, 2023. "Distributed synchronization of delayed dynamic networks under asynchronous delay-dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jiaqi & Qin, Kaiyu & Li, Meng & Lin, Boxian & Shi, Mengji, 2024. "Robust finite/fixed-time bipartite flocking control for networked agents under actuator attacks and perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang, 2023. "Effects of changing the weights of arcs on the consensus convergence rate of a leader–follower multi-agent system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Mobayen, Saleh & Alattas, Khalid A. & Fekih, Afef & El-Sousy, Fayez F.M. & Bakouri, Mohsen, 2022. "Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Abdullah K. Alanazi & Jan Awrejcewicz & Saleh Mobayen, 2022. "Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    5. Gao, Zifan & Zhang, Dawei & Zhu, Shuqian, 2023. "Hybrid event-triggered synchronization control of delayed chaotic neural networks against communication delay and random data loss," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Pu, Hao & Li, Fengjun, 2023. "Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    9. You, Xingxing & Shi, Mingyang & Guo, Bin & Zhu, Yuqi & Lai, Wuxing & Dian, Songyi & Liu, Kai, 2022. "Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Huan, Mingchen & Li, Chuandong, 2022. "Stability analysis of state-dependent impulsive systems via a new two-sided looped functional," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Xianyang Xie & Shiping Wen & Yuming Feng & Babatunde Oluwaseun Onasanya, 2022. "Three-Stage-Impulse Control of Memristor-Based Chen Hyper-Chaotic System," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    13. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    14. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Zhang, Lingzhong & Zhong, Jie & Lou, Jungang & Liu, Yang & Lu, Jianquan, 2023. "Bipartite secure synchronization for dynamic networks under deception attacks via delay-dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Zheng, Huannan & Zhu, Wei & Li, Xiaodi, 2024. "Quasi-synchronization of parameter mismatch drive-response systems: A self-triggered impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    17. Luo, Peng & Wu, Defeng & Yamashita, Andre S. & Feng, Na & Yang, Yang, 2024. "Observer-based fixed-time dynamic surface tracking control for autonomous surface vehicles under actuator constraints and denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    18. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    19. Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.