IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009767.html
   My bibliography  Save this article

A resilient event-triggered control strategy for truck platooning cyber–physical systems against denial-of-service attacks

Author

Listed:
  • Ye, Cong
  • Li, Kening
  • Zhang, Ronghui
  • Wu, Dongsheng
  • Chen, Xia
  • Gu, Yuchuan
  • Ge, Yingen
  • Yu, Fan

Abstract

With the deployment of vehicle-to-everything(V2X) communication technology, Denial-of-Service(DoS) attacks gradually pose potential threats for the truck platooning cyber–physical systems(TPCPS) due to disruption of information exchange in vehicular networks, resulting in instability of truck platooning and even traffic accidents. Motivated by this, the study proposes a resilient event-triggered control strategy to maintain the performance or stability of the TPCPS when DoS attacks happen. First, a resilient event-triggered mechanism is proposed to ensure that the onboard controller can receive and update status information in time after attack intervals, mitigating effect of the vehicle-to-vehicle(V2V) communication disruptions. Subsequently, the sufficient condition is derived which is to confine DoS attacks and makes a key role in maintaining the platoon’s internal stability. To guarantee the consensus control performance of the TPCPS, the switched event-triggered controller is designed by the Lyapunov approach. The controller is expected to output corresponding control based on the updated status information in communication interval. Ultimately, the proposed strategy’s effectiveness is validated through simulations. The proposed resilient event-triggered control strategy is shown to be able to effectively mitigate abnormalities in the TPCPS under DoS attacks, thus ensuring safe and comfortable driving. Compared with event-triggered sliding mode control, the proposed method achieves smaller inter-vehicle distances while ensuring stability, enhancing traffic efficiency.

Suggested Citation

  • Ye, Cong & Li, Kening & Zhang, Ronghui & Wu, Dongsheng & Chen, Xia & Gu, Yuchuan & Ge, Yingen & Yu, Fan, 2024. "A resilient event-triggered control strategy for truck platooning cyber–physical systems against denial-of-service attacks," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009767
    DOI: 10.1016/j.chaos.2024.115424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Weiping & Wang, Chunyang & Wang, Zhen & Han, Baijing & He, Chang & Cheng, Jun & Luo, Xiong & Yuan, Manman & Kurths, Jürgen, 2021. "Nonlinear consensus-based autonomous vehicle platoon control under event-triggered strategy in the presence of time delays," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    2. Zhang, Sen & Wang, Xin & Zhou, Yuhao, 2023. "Model-based neuroadaptive event-triggered tracking consensus control for nonlinear multiagent systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Liu, Mengmeng & Yu, Jinyong & Liu, Yu, 2022. "Dynamic event-triggered asynchronous fault detection for Markov jump systems with partially accessible hidden information and subject to aperiodic DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    4. Zhao, Dongke & Shi, Michael & Zhang, Huiyan & Liu, Yongchao & Zhao, Ning, 2024. "Event-triggering adaptive neural network output feedback control for networked systems under false data injection attacks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yongjie & Zhang, Huiyan & Liu, Yongchao & Zhao, Ning & Mathiyalagan, Kalidass, 2024. "Dynamic event-triggered adaptive neural control for MIMO nonlinear CPSs with time-varying parameters and deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Li, Xin & Mu, Xiaowu, 2024. "Dynamic event-triggered fuzzy control for nonlinear singular semi-Markovian jump systems via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    4. Zhuang, Xinfa & Zhang, Jing & Tian, Junfang & Cui, Fengying & Wang, Tao, 2024. "Variable time headway spacing strategy for connected vehicles platoon based on sliding mode control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Anand, Amit & Guha, Dipayan & Purwar, Shubhi, 2024. "Adaptive consensus control of leader-follower multi-agent system with actuator deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. He, Xinyi & Liu, Chang & Li, Xiaodi, 2024. "A practical leader–follower hybrid control scheme for wheeled mobile robots," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.