IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44315-7.html
   My bibliography  Save this article

A mode-locked random laser generating transform-limited optical pulses

Author

Listed:
  • Jean Pierre Weid

    (Pontifical Catholic University of Rio de Janeiro)

  • Marlon M. Correia

    (Pontifical Catholic University of Rio de Janeiro)

  • Pedro Tovar

    (University of Ottawa)

  • Anderson S. L. Gomes

    (Universidade Federal de Pernambuco)

  • Walter Margulis

    (Pontifical Catholic University of Rio de Janeiro
    Royal Institute of Technology)

Abstract

Ever since the mid-1960’s, locking the phases of modes enabled the generation of laser pulses of duration limited only by the uncertainty principle, opening the field of ultrafast science. In contrast to conventional lasers, mode spacing in random lasers is ill-defined because optical feedback comes from scattering centres at random positions, making it hard to use mode locking in transform limited pulse generation. Here the generation of sub-nanosecond transform-limited pulses from a mode-locked random fibre laser is reported. Rayleigh backscattering from decimetre-long sections of telecom fibre serves as laser feedback, providing narrow spectral selectivity to the Fourier limit. The laser is adjustable in pulse duration (0.34–20 ns), repetition rate (0.714–1.22 MHz) and can be temperature tuned. The high spectral-efficiency pulses are applied in distributed temperature sensing with 9.0 cm and 3.3 × 10−3 K resolution, exemplifying how the results can drive advances in the fields of spectroscopy, telecommunications, and sensing.

Suggested Citation

  • Jean Pierre Weid & Marlon M. Correia & Pedro Tovar & Anderson S. L. Gomes & Walter Margulis, 2024. "A mode-locked random laser generating transform-limited optical pulses," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44315-7
    DOI: 10.1038/s41467-023-44315-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44315-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44315-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ursula Keller, 2003. "Recent developments in compact ultrafast lasers," Nature, Nature, vol. 424(6950), pages 831-838, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Qin, Haoye & Liu, Jiayao & Ouyang, Hao & Wang, Xiaogang & Fu, Bo, 2023. "Spatiotemporal dissipative soliton resonances in multimode fiber lasers," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Tang, Ziya & Tu, Lisha & Jiang, Yu & Wang, Jiachen & Wang, Jinzhang & Yan, Peiguang & Liu, Xing & Ruan, Shuangchen & Guo, Chunyu, 2024. "Pure-quartic soliton in a birefringence-managed fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Dong Mao & Huaqiang Wang & Heze Zhang & Chao Zeng & Yueqing Du & Zhiwen He & Zhipei Sun & Jianlin Zhao, 2021. "Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Yang, Song & Zhu, Zhiwei & He, Chaojian & Shi, Yiwen & Yang, Yingying & Lin, Xuechun, 2024. "Collapse of pure-quartic solitons in a mode-locked fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Junting Liu & Fang Yang & Junpeng Lu & Shuai Ye & Haowen Guo & Hongkun Nie & Jialin Zhang & Jingliang He & Baitao Zhang & Zhenhua Ni, 2022. "High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Nagi, Jaspreet Kaur & Jana, Soumendu, 2022. "Broadband cavity soliton with graphene saturable absorber," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Changjian Lv & Fanchao Meng & Linghao Cui & Yadong Jiao & Zhixu Jia & Weiping Qin & Guanshi Qin, 2024. "Voltage-controlled nonlinear optical properties in gold nanofilms via electrothermal effect," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Zhang, Xunbo & Zou, Defeng & Liu, Runmin & Lv, Jinqian & Hu, Minglie & Shum, Perry Ping & Song, Youjian, 2024. "From breather solitons to chaos in an ultrafast laser: The scenario of cascading short and long-period pulsations," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44315-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.