IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924010191.html
   My bibliography  Save this article

Third order interactions shift the critical coupling in multidimensional Kuramoto models

Author

Listed:
  • Fariello, Ricardo
  • de Aguiar, Marcus A.M.

Abstract

The study of higher order interactions in the dynamics of Kuramoto oscillators has been a topic of intense research. Previous works have demonstrated that such interactions can give rise to interesting new phenomena such as multi-stability and synchronization even if the interaction between oscillators is repulsive. Here we consider higher order interactions in the multidimensional Kuramoto model where pairs (1-simplex), triplets (2-simplex) and quadruples (3-simplex) of oscillators interact simultaneously with different coupling strengths, k1, k2 and k3, respectively. For the types of asymmetric interactions considered, we show that three body terms shift the critical coupling for synchronization towards higher values, except in 2 dimensions where a cancellation occurs. However, after the transition, three and four body interactions combine to facilitate synchronization. We also show that, for fixed values of k2 and k3, and fully connected networks, the behavior of the order parameter r(k1) is described by a universal curve given by its value at k2=k3=0, shifted along the k1 axis. Similar to the 2-dimensional case with asymmetric interactions, bi-stability and hysteresis develop for large enough higher order interactions. Multi-stability, typical of symmetric higher order interactions, is not found. We show simulations in three and four dimensions to illustrate the dynamics.

Suggested Citation

  • Fariello, Ricardo & de Aguiar, Marcus A.M., 2024. "Third order interactions shift the critical coupling in multidimensional Kuramoto models," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010191
    DOI: 10.1016/j.chaos.2024.115467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.