IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000298.html
   My bibliography  Save this article

Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates

Author

Listed:
  • Damásio, Bruno
  • Nicolau, João

Abstract

Markov chain models are used in several applications and different areas of study. A Markov chain model is usually assumed to be homogeneous in the sense that the transition probabilities are time-invariant. Yet, ignoring the inhomogeneous nature of a stochastic process by disregarding the presence of structural breaks can lead to misleading conclusions. Several methodologies are currently proposed for detecting structural breaks in a Markov chain. However, these methods have some limitations: namely they can only test directly for the presence of a single structural break. This paper proposes a new methodology for detecting and testing the presence of multiple structural breaks in a Markov chain occurring at unknown dates.

Suggested Citation

  • Damásio, Bruno & Nicolau, João, 2024. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000298
    DOI: 10.1016/j.chaos.2024.114478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Gangloff, Hugo & Morales, Katherine & Petetin, Yohan, 2023. "Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Ling, Shiqing, 2016. "Estimation Of Change-Points In Linear And Nonlinear Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(2), pages 402-430, April.
    6. Eric Fung & Tak Siu, 2012. "A Flexible Markov Chain Approach for Multivariate Credit Ratings," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 135-143, February.
    7. Kristi Kuljus & Jüri Lember, 2023. "Pairwise Markov Models and Hybrid Segmentation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-32, June.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    10. João Nicolau, 2014. "A New Model for Multivariate Markov Chains," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1124-1135, December.
    11. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    12. Asadabadi, Mehdi Rajabi, 2017. "A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1049-1062.
    13. Hansen, Peter Reinhard, 2003. "Structural changes in the cointegrated vector autoregressive model," Journal of Econometrics, Elsevier, vol. 114(2), pages 261-295, June.
    14. Tan, Baris & Yilmaz, Kamil, 2002. "Markov chain test for time dependence and homogeneity: An analytical and empirical evaluation," European Journal of Operational Research, Elsevier, vol. 137(3), pages 524-543, March.
    15. García Cabello, Julia, 2017. "The future of branch cash holdings management is here: New Markov chains," European Journal of Operational Research, Elsevier, vol. 259(2), pages 789-799.
    16. Jin-Guo Xian & Dong Han & Jian-Qi Yu, 2016. "Online change detection of Markov chains with unknown post-change transition probabilities," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(3), pages 597-611, February.
    17. Bruce Bukiet & Elliotte Rusty Harold & José Luis Palacios, 1997. "A Markov Chain Approach to Baseball," Operations Research, INFORMS, vol. 45(1), pages 14-23, February.
    18. João Nicolau & Flavio Riedlinger, 2015. "Estimation and inference in multivariate Markov chains," Statistical Papers, Springer, vol. 56(4), pages 1163-1173, November.
    19. Nicolau, João, 2017. "A simple nonparametric method to estimate the expected time to cross a threshold," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 146-152.
    20. Andre Berchtold, 2001. "Estimation in the Mixture Transition Distribution Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(4), pages 379-397, July.
    21. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    22. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-177, Supplemen.
    23. Polansky, Alan M., 2007. "Detecting change-points in Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6013-6026, August.
    24. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    25. Tak-Kuen Siu & Wai-Ki Ching & S. Eric Fung & Michael Ng, 2005. "On a multivariate Markov chain model for credit risk measurement," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 543-556.
    26. Maskawa, Jun-ichi, 2003. "Multivariate Markov chain modeling for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 317-322.
    27. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    28. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    29. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    30. Adrian Raftery & Simon Tavaré, 1994. "Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 179-199, March.
    31. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    32. Damásio, Bruno & Louçã, Francisco & Nicolau, João, 2018. "The changing economic regimes and expected time to recover of the peripheral countries under the euro: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 524-533.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Damásio & João Nicolau, 2020. "Time Inhomogeneous Multivariate Markov Chains: Detecting and Testing Multiple Structural Breaks Occurring at Unknown," Working Papers REM 2020/0136, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Ye Li & Pierre Perron, 2017. "Inference on locally ordered breaks in multiple regressions," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 289-353, March.
    3. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    4. Bertrand Candelon & Gianluca Cubadda, 2006. "Testing for Parameter Stability in Dynamic Models across Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 741-760, December.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    6. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    7. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    8. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    9. Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2012. "Testing for Breaks in Cointegrated Panels," Center for Policy Research Working Papers 135, Center for Policy Research, Maxwell School, Syracuse University.
    10. Pierre Perron & Yohei Yamamoto, 2015. "Using OLS to Estimate and Test for Structural Changes in Models with Endogenous Regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 119-144, January.
    11. Bruinshoofd, W.A. & Candelon, B. & Raabe, K., 2005. "Banking sector strength and the transmission of currency crises," Research Memorandum 022, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Pierre Perron & Yohei Yamamoto, 2008. "Estimating and Testing Multiple Structural Changes in Models with Endogenous Regressors," Boston University - Department of Economics - Working Papers Series wp2008-017, Boston University - Department of Economics.
    13. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    14. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    15. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    16. Hultblad Brigitta & Karlsson Sune, 2008. "Bayesian Simultaneous Determination of Structural Breaks and Lag Lengths," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-29, September.
    17. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    18. Eo, Yunjong & Morley, James C., 2008. "Likelihood-Based Confidence Sets for the Timing of Structural Breaks," MPRA Paper 10372, University Library of Munich, Germany.
    19. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    20. Jesper Roine & Daniel Waldenström, 2011. "Common Trends and Shocks to Top Incomes: A Structural Breaks Approach," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 832-846, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.