IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i2d10.1007_s11009-023-10044-z.html
   My bibliography  Save this article

Pairwise Markov Models and Hybrid Segmentation Approach

Author

Listed:
  • Kristi Kuljus

    (University of Tartu)

  • Jüri Lember

Abstract

The article studies segmentation problem (also known as classification problem) with pairwise Markov models (PMMs). A PMM is a process where the observation process and underlying state sequence form a two-dimensional Markov chain, it is a natural generalization of a hidden Markov model. To demonstrate the richness of the class of PMMs, we examine closer a few examples of rather different types of PMMs: a model for two related Markov chains, a model that allows to model an inhomogeneous Markov chain as a conditional marginal process of a homogeneous PMM, and a semi-Markov model. The segmentation problem assumes that one of the marginal processes is observed and the other one is not, the problem is to estimate the unobserved state path given the observations. The standard state path estimators often used are the so-called Viterbi path (a sequence with maximum state path probability given the observations) or the pointwise maximum a posteriori (PMAP) path (a sequence that maximizes the conditional state probability for given observations pointwise). Both these estimators have their limitations, therefore we derive formulas for calculating the so-called hybrid path estimators which interpolate between the PMAP and Viterbi path. We apply the introduced algorithms to the studied models in order to demonstrate the properties of different segmentation methods, and to illustrate large variation in behaviour of different segmentation methods in different PMMs. The studied examples show that a segmentation method should always be chosen with care by taking into account the purpose of modelling and the particular model of interest.

Suggested Citation

  • Kristi Kuljus & Jüri Lember, 2023. "Pairwise Markov Models and Hybrid Segmentation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-32, June.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:2:d:10.1007_s11009-023-10044-z
    DOI: 10.1007/s11009-023-10044-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10044-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10044-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrode, Stéphane & Pieczynski, Wojciech, 2013. "Unsupervised data classification using pairwise Markov chains with automatic copulas selection," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 81-98.
    2. Lember, Jüri & Matzinger, Heinrich & Sova, Joonas & Zucca, Fabio, 2018. "Lower bounds for moments of global scores of pairwise Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1678-1710.
    3. Lember, Jüri & Sova, Joonas, 2020. "Existence of infinite Viterbi path for pairwise Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1388-1425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damásio, Bruno & Nicolau, João, 2024. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lember, Jüri & Sova, Joonas, 2020. "Existence of infinite Viterbi path for pairwise Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1388-1425.
    2. Jüri Lember & Joonas Sova, 2021. "Regenerativity of Viterbi Process for Pairwise Markov Models," Journal of Theoretical Probability, Springer, vol. 34(1), pages 1-33, March.
    3. Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
    4. Gangloff, Hugo & Morales, Katherine & Petetin, Yohan, 2023. "Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Agboton, Damien Joseph, 2024. "Prévision des Cycles Budgétaires dans les Etats membres de l'Union Economique et Monétaire Ouest Africaine (UEMOA) :Une approche basée sur les Chaînes de Markov [Voici la traduction en anglais : Fo," MPRA Paper 121820, University Library of Munich, Germany.
    6. Agboton, Damien Joseph, 2024. "Prévision des Cycles Budgétaires dans les Etats membres de l'Union Economique et Monétaire Ouest Africaine (UEMOA) :Une approche basée sur les Chaînes de Markov [Forecasting Budgetary Cycles in the," MPRA Paper 121821, University Library of Munich, Germany.
    7. Lember, Jüri & Matzinger, Heinrich & Sova, Joonas & Zucca, Fabio, 2018. "Lower bounds for moments of global scores of pairwise Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1678-1710.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:2:d:10.1007_s11009-023-10044-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.