IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v5y2005i6p543-556.html
   My bibliography  Save this article

On a multivariate Markov chain model for credit risk measurement

Author

Listed:
  • Tak-Kuen Siu
  • Wai-Ki Ching
  • S. Eric Fung
  • Michael Ng

Abstract

In this paper, we use credibility theory to estimate credit transition matrices in a multivariate Markov chain model for credit rating. A transition matrix is estimated by a linear combination of the prior estimate of the transition matrix and the empirical transition matrix. These estimates can be easily computed by solving a set of linear programming (LP) problems. The estimation procedure can be implemented easily on Excel spreadsheets without requiring much computational effort and time. The number of parameters is O(s2m2), where s is the dimension of the categorical time series for credit ratings and m is the number of possible credit ratings for a security. Numerical evaluations of credit risk measures based on our model are presented.

Suggested Citation

  • Tak-Kuen Siu & Wai-Ki Ching & S. Eric Fung & Michael Ng, 2005. "On a multivariate Markov chain model for credit risk measurement," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 543-556.
  • Handle: RePEc:taf:quantf:v:5:y:2005:i:6:p:543-556
    DOI: 10.1080/14697680500383714
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500383714
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500383714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Liu & Shijin Chen, 2015. "Credit Risk Measurement Based on the Markov Chain," Business and Management Research, Business and Management Research, Sciedu Press, vol. 4(3), pages 32-42, September.
    2. D’Amico, Guglielmo & De Blasis, Riccardo & Petroni, Filippo, 2023. "The Mixture Transition Distribution approach to networks: Evidence from stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    3. Damásio, Bruno & Nicolau, João, 2024. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:5:y:2005:i:6:p:543-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.