IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v32y2016i02p402-430_00.html
   My bibliography  Save this article

Estimation Of Change-Points In Linear And Nonlinear Time Series Models

Author

Listed:
  • Ling, Shiqing

Abstract

This paper develops an asymptotic theory for estimated change-points in linear and nonlinear time series models. Based on a measurable objective function, it is shown that the estimated change-point converges weakly to the location of the maxima of a double-sided random walk and other estimated parameters are asymptotically normal. When the magnitude d of changed parameters is small, it is shown that the limiting distribution can be approximated by the known distribution as in Yao (1987, Annals of Statistics 15, 1321–1328). This provides a channel to connect our results with those in Picard (1985, Advances in Applied Probability 17, 841–867) and Bai, Lumsdaine, and Stock (1998, Review of Economic Studies 65, 395–432), where the magnitude of changed parameters depends on the sample size n and tends to zero as n → ∞. The theory is applied for the self-weighted QMLE and the local QMLE of change-points in ARMA-GARCH/IGARCH models. A simulation study is carried out to evaluate the performance of these estimators in the finite sample.

Suggested Citation

  • Ling, Shiqing, 2016. "Estimation Of Change-Points In Linear And Nonlinear Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(2), pages 402-430, April.
  • Handle: RePEc:cup:etheor:v:32:y:2016:i:02:p:402-430_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000863/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damásio, Bruno & Nicolau, João, 2024. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Ting Fung Ma & Chun Yip Yau, 2016. "A pairwise likelihood-based approach for changepoint detection in multivariate time series models," Biometrika, Biometrika Trust, vol. 103(2), pages 409-421.
    3. Yunwei Cui & Rongning Wu & Qi Zheng, 2021. "Estimation of change‐point for a class of count time series models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1277-1313, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:32:y:2016:i:02:p:402-430_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.