Exploring the phase diagrams of multidimensional Kuramoto models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.114431
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ferenc Molnar & Takashi Nishikawa & Adilson E. Motter, 2021. "Asymmetry underlies stability in power grids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Moreira, Carolina A. & de Aguiar, Marcus A.M., 2019. "Global synchronization of partially forced Kuramoto oscillators on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 487-496.
- Moreira, Carolina A. & de Aguiar, Marcus A.M., 2019. "Modular structure in C. elegans neural network and its response to external localized stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
- Kevin P. O’Keeffe & Hyunsuk Hong & Steven H. Strogatz, 2017. "Oscillators that sync and swarm," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
- Reis, Adriane S. & Iarosz, Kelly C. & Ferrari, Fabiano A.S. & Caldas, Iberê L. & Batista, Antonio M. & Viana, Ricardo L., 2021. "Bursting synchronization in neuronal assemblies of scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Manoranjani, M. & Senthilkumar, D.V. & Chandrasekar, V.K., 2023. "Diverse phase transitions in Kuramoto model with adaptive mean-field coupling breaking the rotational symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Tianyu & Wu, Yong & Ding, Qianming & Xie, Ying & Yu, Dong & Yang, Lijian & Jia, Ya, 2024. "Social contagion in high-order network with mutation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khramenkov, Vladislav & Dmitrichev, Aleksei & Nekorkin, Vladimir, 2021. "Partial stability criterion for a heterogeneous power grid with hub structures," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Barioni, Ana Elisa D. & de Aguiar, Marcus A.M., 2021. "Complexity reduction in the 3D Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
- Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Carballosa, Alejandro & Muñuzuri, Alberto P., 2022. "Intermittency regimes of poorly-mixed chemical oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Antonio Scala & Sakshi Pahwa & Caterina M. Scoglio, 2015. "Cascade failures and distributed generation in power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 27-35.
- Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
- Cui, Qian & Li, Lulu & Cao, Jinde & Alsaadi, Fawaz E., 2022. "Synchronization of Kuramoto-oscillator networks under event-triggered delayed impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
- Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Wang, Xuan & Zheng, Zhigang & Xu, Can, 2023. "Explosive synchronization in phase oscillator populations with attractive and repulsive adaptive interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
- Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Yang, Huijie & Zhang, Jie & Small, Michael, 2023. "Synchronization of multiple mobile reservoir computing oscillators in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Michael Riedl & Isabelle Mayer & Jack Merrin & Michael Sixt & Björn Hof, 2023. "Synchronization in collectively moving inanimate and living active matter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Olmi, Simona & Gambuzza, Lucia Valentina & Frasca, Mattia, 2024. "Multilayer control of synchronization and cascading failures in power grids," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Li, Xueqi & Ghosh, Dibakar & Lei, Youming, 2023. "Chimera states in coupled pendulum with higher-order interaction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Moujahid, A. & Vadillo, F., 2022. "Energy analysis of bursting Hindmarsh-Rose neurons with time-delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Dharma Raj Khatiwada, 2022. "Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature," Mathematics, MDPI, vol. 10(19), pages 1-10, October.
More about this item
Keywords
Synchronization; Dynamics on the sphere; Symmetry breaking; Kuramoto mode;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923013334. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.