IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002527.html
   My bibliography  Save this article

Explosive synchronization in phase oscillator populations with attractive and repulsive adaptive interactions

Author

Listed:
  • Wang, Xuan
  • Zheng, Zhigang
  • Xu, Can

Abstract

The attractive and repulsive adaptive coupling schemes among dynamical agents are ubiquitous in systems ranging from physics, biology to neuroscience, which have attracted increasing interest and ample attention during recent years. Here, we extend the classical Kuramoto model to the coupling with mixed signs by considering a particular adaptive scheme in a system of globally coupled phase oscillators. The time-varying coupling weight between each pair of oscillators is correlated with the local coherence that involves according to a nonlinear differential equation. The studied model is capable of capturing the essential properties of the explosive synchronization induced by the adaptive interactions. We carry out extensive simulations to explore the collective dynamics in different perspectives. Remarkably, we reveal that the occurrence of the abrupt transitions of the macroscopic overall weights, as well as the emergence of the correlations between the microscopic structure features (including degrees and frequency dissasortativity) and local dynamics trigger the explosive synchronization, which manifests the suppression rule for the formation of small synchronized clusters. Furthermore, we provide an analytical treatment for the reduced system that allows us to grasp the underlying mechanism of the observed phenomena. Our study can deepen the understanding of the explosive synchronization transitions and other related abrupt dynamic phenomena occurring in networked oscillators with generic adaptive schemes.

Suggested Citation

  • Wang, Xuan & Zheng, Zhigang & Xu, Can, 2023. "Explosive synchronization in phase oscillator populations with attractive and repulsive adaptive interactions," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002527
    DOI: 10.1016/j.chaos.2023.113351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frolov, Nikita & Rakshit, Sarbendu & Maksimenko, Vladimir & Kirsanov, Daniil & Ghosh, Dibakar & Hramov, Alexander, 2021. "Coexistence of interdependence and competition in adaptive multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Yi, Wang & Yu, Xue & Xue, Wang & Bing-ling, Cen & Yan-feng, Qiao, 2021. "Dynamic behaviors in two-layer coupled oscillator system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Dai, Xiangfeng & Li, Xuelong & Gutiérrez, Ricardo & Guo, Hao & Jia, Danyang & Perc, Matjaž & Manshour, Pouya & Wang, Zhen & Boccaletti, Stefano, 2020. "Explosive synchronization in populations of cooperative and competitive oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Can & Yu, Huajian & Guan, Shuguang, 2023. "Dynamical origin of the explosive synchronization with partial adaptive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Antonio Scala & Sakshi Pahwa & Caterina M. Scoglio, 2015. "Cascade failures and distributed generation in power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 27-35.
    4. Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    5. Frolov, Nikita & Rakshit, Sarbendu & Maksimenko, Vladimir & Kirsanov, Daniil & Ghosh, Dibakar & Hramov, Alexander, 2021. "Coexistence of interdependence and competition in adaptive multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    7. Khramenkov, Vladislav & Dmitrichev, Aleksei & Nekorkin, Vladimir, 2021. "Partial stability criterion for a heterogeneous power grid with hub structures," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Wu, Yonggang & Zheng, Zhigang & Tang, Longkun & Xu, Can, 2022. "Synchronization dynamics of phase oscillator populations with generalized heterogeneous coupling," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Li, Wen-Jing & Jiang, Luo-Luo & Chen, Zhi & Perc, Matjaž & Slavinec, Mitja, 2020. "Optimization of mobile individuals promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    11. Lai, Joel Weijia & Cheong, Kang Hao, 2023. "Boosting Brownian-inspired games with network synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Fariello, Ricardo & de Aguiar, Marcus A.M., 2024. "Exploring the phase diagrams of multidimensional Kuramoto models," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    13. Olmi, Simona & Gambuzza, Lucia Valentina & Frasca, Mattia, 2024. "Multilayer control of synchronization and cascading failures in power grids," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    15. Ling, Xiang & Liu, Qing-Yang & Hua, Xia & Zhu, Kong-Jin & Guo, Ning & Chen, Jia-Jia, 2023. "The spatial group and cyclic oscillations caused by the power correlation between the moving direction and the phase of a moving oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    16. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    17. Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Xu, Can & Yu, Huajian & Guan, Shuguang, 2023. "Dynamical origin of the explosive synchronization with partial adaptive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    20. HyungSeon Oh, 2019. "Analytical solution to swing equations in power grids," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.