IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp487-496.html
   My bibliography  Save this article

Global synchronization of partially forced Kuramoto oscillators on networks

Author

Listed:
  • Moreira, Carolina A.
  • de Aguiar, Marcus A.M.

Abstract

We study the synchronization of Kuramoto oscillators on networks where only a fraction of them is subjected to a periodic external force. When all oscillators receive the external drive the system always synchronize with the periodic force if its intensity is sufficiently large. Our goal is to understand the conditions for global synchronization as a function of the fraction of nodes being forced and how these conditions depend on network topology, strength of internal couplings and intensity of external forcing. Numerical simulations show that the force required to synchronize the network with the external drive increases as the inverse of the fraction of forced nodes. However, for a given coupling strength, synchronization does not occur below a critical fraction, no matter how large is the force. Network topology and properties of the forced nodes also affect the critical force for synchronization. We develop analytical calculations for the critical force for synchronization as a function of the fraction of forced oscillators and for the critical fraction as a function of coupling strength. We also describe the transition from synchronization with the external drive to spontaneous synchronization.

Suggested Citation

  • Moreira, Carolina A. & de Aguiar, Marcus A.M., 2019. "Global synchronization of partially forced Kuramoto oscillators on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 487-496.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:487-496
    DOI: 10.1016/j.physa.2018.09.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312287
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dharma Raj Khatiwada, 2022. "Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature," Mathematics, MDPI, vol. 10(19), pages 1-10, October.
    2. Fariello, Ricardo & de Aguiar, Marcus A.M., 2024. "Exploring the phase diagrams of multidimensional Kuramoto models," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    5. Barioni, Ana Elisa D. & de Aguiar, Marcus A.M., 2021. "Complexity reduction in the 3D Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    6. Cui, Qian & Li, Lulu & Cao, Jinde & Alsaadi, Fawaz E., 2022. "Synchronization of Kuramoto-oscillator networks under event-triggered delayed impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    2. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    3. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    4. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    5. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    7. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    8. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    9. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    10. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    11. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    12. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    13. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    14. Gennady Ougolnitsky & Olga Gorbaneva, 2022. "Sustainable Management in Active Networks," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    15. Hiroyasu Inoue, 2016. "Controllability Analyses on Firm Networks Based on Comprehensive Data," Papers 1604.01322, arXiv.org.
    16. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    17. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).
    18. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Yong, Nuo & Ni, Shunjiang & Shen, Shifei & Ji, Xuewei, 2020. "A study of fluctuations in subway traffic from the control properties of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    20. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:487-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.