IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics096007792200100x.html
   My bibliography  Save this article

A new fractional-order chaos system of Hopfield neural network and its application in image encryption

Author

Listed:
  • Xu, Shaochuan
  • Wang, Xingyuan
  • Ye, Xiaolin

Abstract

In this work, we propose a new fractional-order chaotic system based on the model of 4-neurons-based Hopfield Neural Network (HNN). By using Adomain decomposition method, the proposed fractional-order chaotic system is solved. With the orders changing, the proposed fractional-order system shows rich dynamical characteristics. Then, based on the pseudo-random numbers (PRNs) generated by the proposed system, a new construction method of multiple hash index chain is designed. And a new image encryption algorithm is designed according to the multiple hash index chain. The safety test results show that the design encryption algorithm has higher security performance. Finally, the 4-neurons-based HNN fractional-order system is implemented by Multisim circuit simulation. The experimental results show the feasibility of the theoretical analysis.

Suggested Citation

  • Xu, Shaochuan & Wang, Xingyuan & Ye, Xiaolin, 2022. "A new fractional-order chaos system of Hopfield neural network and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200100x
    DOI: 10.1016/j.chaos.2022.111889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200100X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tao & Mou, Jun & Banerjee, Santo & Cao, Yinghong, 2023. "Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Rasool, Masrat & Belhaouari, Samir Brahim, 2023. "From Collatz Conjecture to chaos and hash function," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Vikneswari Someetheram & Muhammad Fadhil Marsani & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Siti Syatirah Muhammad Sidik & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor, 2022. "Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    7. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    8. Jayaraman Venkatesh & Alexander N. Pchelintsev & Anitha Karthikeyan & Fatemeh Parastesh & Sajad Jafari, 2023. "A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption," Mathematics, MDPI, vol. 11(21), pages 1-17, October.
    9. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200100x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.