IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp495-512.html
   My bibliography  Save this article

Dynamics of a stochastic food chain chemostat model with Monod–Haldane functional response and Ornstein–Uhlenbeck process

Author

Listed:
  • Xu, Xin
  • Tian, Baodan
  • Chen, Xingzhi
  • Qiu, Yanhong

Abstract

In the present paper, a novel stochastic food chain chemostat model with Monod–Haldane functional response is proposed and studied, incorporating the mean-reversion Ornstein–Uhlenbeck process to simulate stochastic perturbation on the growth of microorganisms by environmental fluctuations. Firstly, the existence and uniqueness of the global positive solution are proved, and the stochastic boundedness of the solution is obtained. Secondly, the conditions for controlling exponential extinction and persistence in the mean of microorganisms are delved. Finally, a large number of representative numerical examples are provided to validate the theoretical results. The results show that the stochastic noise measured by the regression speed and the fluctuation intensity has significant effects on the dynamics of the model.

Suggested Citation

  • Xu, Xin & Tian, Baodan & Chen, Xingzhi & Qiu, Yanhong, 2024. "Dynamics of a stochastic food chain chemostat model with Monod–Haldane functional response and Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 495-512.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:495-512
    DOI: 10.1016/j.matcom.2024.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:495-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.