IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923010512.html
   My bibliography  Save this article

Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction

Author

Listed:
  • Karimov, Artur
  • Kopets, Ekaterina
  • Karimov, Timur
  • Almjasheva, Oksana
  • Arlyapov, Viacheslav
  • Butusov, Denis

Abstract

The Belousov–Zhabotinsky chemical reaction is famous for its oscillatory behavior occurring due to inherent physicochemical processes. Oscillations of the Belousov–Zhabotinsky reaction may be periodic or chaotic, depending on parameters, and these dynamics can be controlled by external impacts such as stirring. The complex behavior, the variability of the oscillatory modes, and controllability make the Belousov–Zhabotinsky reaction an important research subject in many fields of science, including various applications such as chemical computing or smart materials. One of the key limitations for the practical application of this oscillatory reaction is the absence of its exact mathematical model which can reproduce dynamics close to the real chemical process. This work aims to fill this gap by designing a novel model of the Belousov–Zhabotinsky reaction based on experimental data. To solve this task, we designed a complex experimental setup based on a photometric station with controllable stirring mechanisms. We performed two experiments in batch reactors (cuvettes). In the first experiment, we investigated how constant stirring with different rates affects the reaction behavior, and in the second experiment, we periodically stirred the reaction and observed its response. As a result, we found that chemical oscillations in the Belousov–Zhabotinsky reaction are in both cases chaotic, their amplitude depends on stirring more than their period does, and they are highly non-stationary: in the course of the reaction, their sensitivity to stirring decreases, so the oscillations remain controllable only during the first hour. Using a novel two-stage differential equation reconstruction approach, we managed to develop a complex of local dynamical models for the stirring-controlled BZ reaction with good correspondence to the empirical data. The presented models are more consistent with experimentally observed Belousov–Zhabotinsky dynamics than earlier models. The developed model can be used in various applications and extended to a wide class of controlled oscillatory reactions.

Suggested Citation

  • Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010512
    DOI: 10.1016/j.chaos.2023.114149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veeresha, P., 2022. "The efficient fractional order based approach to analyze chemical reaction associated with pattern formation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Artur Karimov & Erivelton G. Nepomuceno & Aleksandra Tutueva & Denis Butusov, 2020. "Algebraic Method for the Reconstruction of Partially Observed Nonlinear Systems Using Differential and Integral Embedding," Mathematics, MDPI, vol. 8(2), pages 1-22, February.
    3. Fatoorehchi, Hooman & Zarghami, Reza & Abolghasemi, Hossein & Rach, Randolph, 2015. "Chaos control in the cerium-catalyzed Belousov–Zhabotinsky reaction using recurrence quantification analysis measures," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 121-129.
    4. Budroni, Marcello Antonio & Tiezzi, Enzo & Rustici, Mauro, 2010. "On chaotic graphs: A different approach for characterizing aperiodic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3883-3891.
    5. Artur I. Karimov & Ekaterina Kopets & Erivelton G. Nepomuceno & Denis Butusov, 2021. "Integrate-and-Differentiate Approach to Nonlinear System Identification," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    6. Andrei Victor Oancea & Ilie Bodale, 2022. "Chaos Synchronization of Two Györgyi–Field Systems for the Belousov–Zhabotinsky Chemical Reaction," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    7. Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    8. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    9. Juan Manuel Parrilla-Gutierrez & Abhishek Sharma & Soichiro Tsuda & Geoffrey J. T. Cooper & Gerardo Aragon-Camarasa & Kevin Donkers & Leroy Cronin, 2020. "A programmable chemical computer with memory and pattern recognition," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    6. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    8. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    9. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    10. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    12. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    13. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    16. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    17. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    18. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Upside-Downside Multifractality and Efficiency of Green Bonds: The Roles of Global Factors and COVID-19," Finance Research Letters, Elsevier, vol. 43(C).
    20. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.