IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i6p433-449.html
   My bibliography  Save this article

Critical homoclinic orbits lead to snap-back repellers

Author

Listed:
  • Gardini, Laura
  • Sushko, Iryna
  • Avrutin, Viktor
  • Schanz, Michael

Abstract

When nondegenerate homoclinic orbits to an expanding fixed point of a map f:X→X,X⊆Rn, exist, the point is called a snap-back repeller. It is known that the relevance of a snap-back repeller (in its original definition) is due to the fact that it implies the existence of an invariant set on which the map is chaotic. However, when does the first homoclinic orbit appear? When can other homoclinic explosions, i.e., appearance of infinitely many new homoclinic orbits, occur? As noticed by many authors, these problems are still open. In this work we characterize these bifurcations, for any kind of map, smooth or piecewise smooth, continuous or discontinuous, defined in a bounded or unbounded closed set. We define a noncritical homoclinic orbit and a homoclinic orbit of an expanding fixed point is structurally stable iff it is noncritical. That is, only critical homoclinic orbits are responsible for the homoclinic explosions. The possible kinds of critical homoclinic orbits will be also investigated, as well as their dynamic role.

Suggested Citation

  • Gardini, Laura & Sushko, Iryna & Avrutin, Viktor & Schanz, Michael, 2011. "Critical homoclinic orbits lead to snap-back repellers," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 433-449.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:6:p:433-449
    DOI: 10.1016/j.chaos.2011.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911000385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marotto, F.R., 2005. "On redefining a snap-back repeller," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 25-28.
    2. Shi, Yuming & Yu, Pei, 2006. "Study on chaos induced by turbulent maps in noncompact sets," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1165-1180.
    3. Gao, Yinghui, 2009. "Complex dynamics in a two-dimensional noninvertible map," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1798-1810.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khellat, Farhad & Ghaderi, Akashe & Vasegh, Nastaran, 2011. "Li–Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 934-939.
    2. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Commendatore, Pasquale & Pinto, Antonio & Sushko, Iryna, 2014. "A post-Keynesian model of growth and distribution with a constraint on investment," Structural Change and Economic Dynamics, Elsevier, vol. 28(C), pages 12-24.
    4. Laura Gardini & Roya Makrooni & Iryna Sushko, 2016. "Cascades of Alternating Smooth Bifurcations and Border Collision Bifurcations in a Family of Discontinuous Linear-Power Maps," Gecomplexity Discussion Paper Series 201603, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Mar 2016.
    5. Ingrid Kubin & Laura Gardini, 2022. "On the significance of borders: the emergence of endogenous dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 41-62, January.
    6. Laura Gardini & Iryna Sushko, 2018. "Growing through chaos in the Matsuyama map via subcritical flip and bistability," Working Papers 1801, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2018.
    7. Matsuo, Akihito & Asahara, Hiroyuki & Kousaka, Takuji, 2012. "Bifurcation structure of chaotic attractor in switched dynamical systems with spike noise," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 795-804.
    8. Roya Makrooni & Laura Gardini, 2015. "Bifurcation structures in a family of one-dimensional linear-power discontinuous maps," Gecomplexity Discussion Paper Series 7, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Jan 2015.
    9. Gardini, Laura & Sushko, Iryna, 2019. "Growing through chaos in the Matsuyama map via subcritical flip bifurcation and bistability," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 52-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, December.
    2. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    3. Liang, Wei & Lv, Xiaolin, 2022. "Li-Yorke chaos in a class of controlled delay difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Ekaterina Ekaterinchuk & Jochen Jungeilges & Tatyana Ryazanova & Iryna Sushko, 2017. "Dynamics of a minimal consumer network with uni-directional influence," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 831-857, November.
    5. Rahman, Aminur & Blackmore, Denis, 2017. "Threshold voltage dynamics of chaotic RS flip-Flops," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 555-566.
    6. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    7. Ingrid Kubin & Laura Gardini, 2022. "On the significance of borders: the emergence of endogenous dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 41-62, January.
    8. Gardini, Laura & Hommes, Cars & Tramontana, Fabio & de Vilder, Robin, 2009. "Forward and backward dynamics in implicitly defined overlapping generations models," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 110-129, August.
    9. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Dohtani, Akitaka, 2011. "Chaos resulting from nonlinear relations between different variables," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 290-297.
    12. Chen, Shyan-Shiou & Shih, Chih-Wen, 2009. "Transiently chaotic neural networks with piecewise linear output functions," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 717-730.
    13. Elhafsi Boukhalfa & Elhadj Zeraoulia, 2014. "Existence of Super Chaotic Attractors in a General Piecewise Smooth Map of the Plane," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 12(1), pages 92-98.
    14. Georges SARAFOPOULOS & Kosmas PAPADOPOULOS, 2017. "On A Cournot Duopoly Game With Differentiated Goods, Heterogeneous Expectations And A Cost Function Including Emission Costs," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 16(1), pages 11-22.
    15. Shi, Yuming & Ju, Hyonhui & Chen, Guanrong, 2009. "Coupled-expanding maps and one-sided symbolic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2138-2149.
    16. A. M. A. El-Sayed & S. M. Salman, 2019. "Dynamical analysis of a complex logistic-type map," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(2), pages 427-450, June.
    17. Kim, Cholsan & Ju, Hyonhui & Chen, Minghao & Raith, Peter, 2015. "A-coupled-expanding and distributional chaos," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 291-295.
    18. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    19. Li, Yan & Wang, Lidong, 2019. "Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 116-126.
    20. Zhao, Yi & Xie, Lingli & Yiu, K.F. Cedric, 2009. "An improvement on Marotto’s theorem and its applications to chaotification of switching systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2225-2232.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:6:p:433-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.