IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002783.html
   My bibliography  Save this article

Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods

Author

Listed:
  • Alexeeva, Tatyana
  • Diep, Quoc Bao
  • Kuznetsov, Nikolay
  • Zelinka, Ivan

Abstract

One of the key tasks in the economy is forecasting the economic agents’ expectations of the future values of economic variables using mathematical models. The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power. In this paper, we study the regimes of behavior of two economic models and identify irregular dynamics in them. Using these models as an example, we demonstrate the effectiveness of evolutionary algorithms and the continuous deep Q-learning method in combination with Pyragas control method for deriving a control action that stabilizes unstable periodic trajectories and suppresses chaotic dynamics. We compare qualitative and quantitative characteristics of the model’s dynamics before and after applying control and verify the obtained results by numerical simulation. Proposed approach can improve the reliability of forecasting and tuning of the economic mechanism to achieve maximum decision-making efficiency.

Suggested Citation

  • Alexeeva, Tatyana & Diep, Quoc Bao & Kuznetsov, Nikolay & Zelinka, Ivan, 2023. "Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002783
    DOI: 10.1016/j.chaos.2023.113377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
    2. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.
    2. Pablo Aguilar, 2020. "Inflation persistence in the euro area: the role of expectations," Economic Bulletin, Banco de España, issue 4/2020.
    3. Goy, Gavin & Hommes, Cars & Mavromatis, Kostas, 2022. "Forward guidance and the role of central bank credibility under heterogeneous beliefs," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 1240-1274.
    4. Kase, Hanno & Melosi, Leonardo & Rottner, Matthias, 2024. "Estimating Nonlinear Heterogeneous Agent Models with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1499, University of Warwick, Department of Economics.
    5. Jaqueson K. Galimberti, 2020. "Information weighting under least squares learning," CAMA Working Papers 2020-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    7. André, Marine Charlotte & Dai, Meixing, 2017. "Is central bank conservatism desirable under learning?," Economic Modelling, Elsevier, vol. 60(C), pages 281-296.
    8. Sylvain Leduc & Kevin Moran & Robert J. Vigfusson, 2023. "Learning in the Oil Futures Markets: Evidence and Macroeconomic Implications," The Review of Economics and Statistics, MIT Press, vol. 105(2), pages 392-407, March.
    9. Miura, Shogo, 2023. "Households’ assets, sentiment shocks and business cycles," Economic Modelling, Elsevier, vol. 118(C).
    10. Jiequn Han & Yucheng Yang & Weinan E, 2021. "DeepHAM: A Global Solution Method for Heterogeneous Agent Models with Aggregate Shocks," Papers 2112.14377, arXiv.org, revised Feb 2022.
    11. Guido Ascari & Sophocles Mavroeidis & Nigel McClung, 2023. "Coherence without Rationality at the ZLB," Working Papers 784, DNB.
    12. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    13. Fabio Milani, 2012. "The Modeling of Expectations in Empirical DSGE Models: A Survey," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 3-38, Emerald Group Publishing Limited.
    14. Michael Woodford, 2019. "Monetary Policy Analysis When Planning Horizons Are Finite," NBER Macroeconomics Annual, University of Chicago Press, vol. 33(1), pages 1-50.
    15. Emmet Hall-Hoffarth, 2023. "Non-linear approximations of DSGE models with neural-networks and hard-constraints," Papers 2310.13436, arXiv.org.
    16. Hagenhoff, Tim & Lustenhouwer, Joep, 2020. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Working Papers 0686, University of Heidelberg, Department of Economics.
    17. Agustín Arias, 2016. "Sentiment Shocks as Drivers of Business Cycles," Working Papers Central Bank of Chile 782, Central Bank of Chile.
    18. Iliopulos, Eleni & Perego, Erica & Sopraseuth, Thepthida, 2021. "International business cycles: Information matters," Journal of Monetary Economics, Elsevier, vol. 123(C), pages 19-34.
    19. Kshama Dwarakanath & Svitlana Vyetrenko & Peyman Tavallali & Tucker Balch, 2024. "ABIDES-Economist: Agent-Based Simulation of Economic Systems with Learning Agents," Papers 2402.09563, arXiv.org.
    20. Eusepi, Stefano & Giannoni, Marc P. & Preston, Bruce, 2018. "Some implications of learning for price stability," European Economic Review, Elsevier, vol. 106(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.