IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923002370.html
   My bibliography  Save this article

Modeling and analysis of Buck-Boost converter with non-singular fractional derivatives

Author

Listed:
  • Liao, Xiaozhong
  • Wang, Yong
  • Yu, Donghui
  • Lin, Da
  • Ran, Manjie
  • Ruan, Pengbo

Abstract

Many electrical systems can be characterized more authentically by fractional order dynamic systems. The Caputo–Fabrizio and the Atangana–Baleanu fractional derivatives have solved the singularity problem in the Caputo derivative. This work uses Caputo–Fabrizio and Atangana–Baleanu fractional derivatives to model the fractional order Buck-Boost converter in the time domain. On this basis, the mean values of output voltage and inductor current are calculated. The characteristics of Buck-Boost with different orders in different fractional derivatives are analyzed. The results indicate that the Caputo–Fabrizio and Atangana–Baleanu fractional derivatives can be applied to the Buck-Boost converter to increase the design degree of freedom, which provides more choices for describing the nonlinear characteristics of the system.

Suggested Citation

  • Liao, Xiaozhong & Wang, Yong & Yu, Donghui & Lin, Da & Ran, Manjie & Ruan, Pengbo, 2023. "Modeling and analysis of Buck-Boost converter with non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923002370
    DOI: 10.1016/j.chaos.2023.113336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
    2. Liao, Xiaozhong & Ran, Manjie & Yu, Donghui & Lin, Da & Yang, Ruocen, 2022. "Chaos analysis of Buck converter with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Dassios, Ioannis K. & Baleanu, Dumitru I., 2018. "Caputo and related fractional derivatives in singular systems," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 591-606.
    4. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    5. Ali, Farhad & Ali, Farman & Sheikh, Nadeem Ahmad & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2020. "Caputo–Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    3. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    4. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Dassios, Ioannis & Tzounas, Georgios & Liu, Muyang & Milano, Federico, 2022. "Singular over-determined systems of linear differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 396-412.
    6. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    7. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Hongbo Cao & Faqiang Wang, 2023. "An Overview of Complex Instability Behaviors Induced by Nonlinearity of Power Electronic Systems with Memristive Load," Energies, MDPI, vol. 16(6), pages 1-25, March.
    9. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    10. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    13. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    14. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Fabio Tramontana & Laura Gardini, 2021. "Revisiting Samuelson’s models, linear and nonlinear, stability conditions and oscillating dynamics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-15, December.
    16. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Akgül, Ali & Modanli, Mahmut, 2019. "Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 10-16.
    18. Dassios, Ioannis & Tzounas, Georgios & Milano, Federico, 2019. "The Möbius transform effect in singular systems of differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 338-353.
    19. Sania Qureshi & Norodin A. Rangaig & Dumitru Baleanu, 2019. "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    20. Su, Guangwang & Lu, Liang & Tang, Bo & Liu, Zhenhai, 2020. "Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems," Applied Mathematics and Computation, Elsevier, vol. 378(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923002370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.