IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009834.html
   My bibliography  Save this article

On hybrid dynamical systems of differential–difference equations

Author

Listed:
  • Dassios, Ioannis
  • Vaca, Angel
  • Milano, Federico

Abstract

In this paper, we define and study a class of linear hybrid dynamical systems characterized by differential–difference equations. We introduce two operators that facilitate the analysis of these systems and derive explicit formulas for their solutions. We examine the transfer function matrix and characteristic polynomial to assess stability. Our theoretical findings are supported by numerical examples, demonstrating their application in power systems stability analysis. Specifically, we substantiate our theory within the context of power systems stability analysis, incorporating elements of discrete behavior.

Suggested Citation

  • Dassios, Ioannis & Vaca, Angel & Milano, Federico, 2024. "On hybrid dynamical systems of differential–difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009834
    DOI: 10.1016/j.chaos.2024.115431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano & Elkhateeb S. Aly, 2023. "The Soliton Solutions of the Stochastic Shallow Water Wave Equations in the Sense of Beta-Derivative," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    2. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano, 2023. "On the Dynamical Behavior of Solitary Waves for Coupled Stochastic Korteweg–De Vries Equations," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    3. Dassios, Ioannis K. & Baleanu, Dumitru I., 2018. "Caputo and related fractional derivatives in singular systems," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 591-606.
    4. Dassios, Ioannis & Tzounas, Georgios & Milano, Federico, 2019. "The Möbius transform effect in singular systems of differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 338-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Ortega & Maria Filomena Barros, 2020. "The Samuelson macroeconomic model as a singular linear matrix difference equation," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-10, December.
    2. Dassios, Ioannis & Tzounas, Georgios & Liu, Muyang & Milano, Federico, 2022. "Singular over-determined systems of linear differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 396-412.
    3. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Hail S. Alrashdi & Osama Moaaz & Khaled Alqawasmi & Mohammad Kanan & Mohammed Zakarya & Elmetwally M. Elabbasy, 2024. "Asymptotic and Oscillatory Properties of Third-Order Differential Equations with Multiple Delays in the Noncanonical Case," Mathematics, MDPI, vol. 12(8), pages 1-15, April.
    5. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Liao, Xiaozhong & Wang, Yong & Yu, Donghui & Lin, Da & Ran, Manjie & Ruan, Pengbo, 2023. "Modeling and analysis of Buck-Boost converter with non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Fabio Tramontana & Laura Gardini, 2021. "Revisiting Samuelson’s models, linear and nonlinear, stability conditions and oscillating dynamics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-15, December.
    8. Dassios, Ioannis & Tzounas, Georgios & Milano, Federico, 2019. "The Möbius transform effect in singular systems of differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 338-353.
    9. Su, Guangwang & Lu, Liang & Tang, Bo & Liu, Zhenhai, 2020. "Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    10. Maria Filomena Barros & Fernando Ortega, 2019. "An optimal equilibrium for a reformulated Samuelson economic discrete time system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.