IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923001017.html
   My bibliography  Save this article

Application of the novel-structured multivariable grey model with various orders to forecast the bending strength of concrete

Author

Listed:
  • Zeng, Bo
  • Yin, Fengfeng
  • Yang, Yingjie
  • Wu, You
  • Mao, Cuiwei

Abstract

Bending strength of concrete is one of the significant indexes to measure the mechanical properties of concrete. A reliable prediction about the bending strength of concrete is of great importance to maintain the health state and service life of concrete. However, it is difficult to obtain reliable data of large samples due to the high cost, serious destructiveness and complex influencing factors of concrete bending strength test data collection. In view of this, based on the multivariable grey prediction model whose modeling object is small data, we construct a new novel-structured multivariable grey prediction model with various orders for predicting the bending strength of concrete. It defines and optimizes the accumulative orders differentially and introduces a nonlinear correction term to expand the model structure. Then, the bending strength of concrete is modeled using the new model, and its comprehensive error is only 0.035 %, which is much smaller than the conventional NSGM(1,N) and FMGM(1,N) models (5.232 % and 2.624 %, respectively). The findings provide a new modeling method for the prediction of concrete bending strength in areas with large temperature difference, and have significance for enriching and improving the methodologies of grey prediction models.

Suggested Citation

  • Zeng, Bo & Yin, Fengfeng & Yang, Yingjie & Wu, You & Mao, Cuiwei, 2023. "Application of the novel-structured multivariable grey model with various orders to forecast the bending strength of concrete," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001017
    DOI: 10.1016/j.chaos.2023.113200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wenhao & Zeng, Bo & Wang, Jianzhou & Luo, Xiaoshuang & Liu, Xianzhou, 2021. "Forecasting Chinese carbon emissions using a novel grey rolling prediction model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    2. Zhenguo Xu & Wanli Xie & Caixia Liu, 2023. "An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    3. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    4. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
    5. Li, Zekai & Hu, Xi & Guo, Huan & Xiong, Xin, 2023. "A novel Weighted Average Weakening Buffer Operator based Fractional order accumulation Seasonal Grouping Grey Model for predicting the hydropower generation," Energy, Elsevier, vol. 277(C).
    6. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    7. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    8. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    9. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    10. Ke Liu & Xinyue Xie & Mingxue Zhao & Qian Zhou, 2022. "Carbon Emissions in the Yellow River Basin: Analysis of Spatiotemporal Evolution Characteristics and Influencing Factors Based on a Logarithmic Mean Divisia Index (LMDI) Decomposition Method," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    11. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    12. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    13. Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.
    14. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    15. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    16. Xiong, Xin & Zhu, Zhenghao & Tian, Junhao & Guo, Huan & Hu, Xi, 2024. "A novel Seasonal Fractional Incomplete Gamma Grey Bernoulli Model and its application in forecasting hydroelectric generation," Energy, Elsevier, vol. 290(C).
    17. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    18. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Wenqing Wu & Xin Ma & Bo Zeng & Yuanyuan Zhang & Wanpeng Li, 2021. "Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term," Energy & Environment, , vol. 32(5), pages 759-783, August.
    20. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.