IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311920.html
   My bibliography  Save this article

A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy

Author

Listed:
  • Luo, Xilin
  • Duan, Huiming
  • He, Leiyuhang

Abstract

and accurate prediction of clean energy can supply an important reference for governments to formulate social and economic development policies. This paper begins with the logistic equation which is the whitening equation of the Verhulst model, introduces the Riccati equation with constant coefficients to optimize the whitening equation, and establishes a grey prediction model (CCRGM(1,1)) based on the Riccati equation. This model organically combines the characteristics of the grey model, and flexibly improves the modelling precision. Furthermore, the nonlinear term is optimized by the simulated annealing algorithm. To illustrate the validation of the new model, two kinds of clean energy consumption in the actual area are selected as the research objects. Compared with six other grey prediction models, CCRGM(1,1) model has the highest accuracy in simulation and prediction. Finally, this model is used to predict the nuclear and hydroelectricity energy consumption in North America from 2019 to 2028. The results predict that nuclear energy consumption will keep rising in the next decade, while hydroelectricity energy consumption will rise to a peak and subsequently fall back, which offers important information for the governments of North America to formulate energy measures.

Suggested Citation

  • Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311920
    DOI: 10.1016/j.energy.2020.118085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
    2. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    3. Wang, Li & Xie, Yuxin & Wang, Xiaoyi & Xu, Jiping & Zhang, Huiyan & Yu, Jiabin & Sun, Qian & Zhao, Zhiyao, 2019. "Meteorological sequence prediction based on multivariate space-time auto regression model and fractional calculus grey model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 203-209.
    4. Irene Samora & Mário J. Franca & Anton J. Schleiss & Helena M. Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    5. Huiming Duan & Guang Rong Lei & Kailiang Shao, 2018. "Forecasting Crude Oil Consumption in China Using a Grey Prediction Model with an Optimal Fractional-Order Accumulating Operator," Complexity, Hindawi, vol. 2018, pages 1-12, August.
    6. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    7. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    8. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    9. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    10. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    11. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    12. Shuyu Li & Xue Yang & Rongrong Li, 2018. "Forecasting China’s Coal Power Installed Capacity: A Comparison of MGM, ARIMA, GM-ARIMA, and NMGM Models," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    13. Midilli, Adnan & Dincer, Ibrahim & Ay, Murat, 2006. "Green energy strategies for sustainable development," Energy Policy, Elsevier, vol. 34(18), pages 3623-3633, December.
    14. Nowotny, Janusz & Dodson, John & Fiechter, Sebastian & Gür, Turgut M. & Kennedy, Brendan & Macyk, Wojciech & Bak, Tadeusz & Sigmund, Wolfgang & Yamawaki, Michio & Rahman, Kazi A., 2018. "Towards global sustainability: Education on environmentally clean energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2541-2551.
    15. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    16. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    17. Liu, Xiaoyong & Fu, Hui, 2016. "Volatility forecasting for interbank offered rate using grey extreme learning machine: The case of China," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 249-254.
    18. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Zhang, Yonghong & Mao, Shuhua & Kang, Yuxiao & Wen, Jianghui, 2021. "Fractal derivative fractional grey Riccati model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    5. Daren Zhao & Huiwu Zhang & Qing Cao & Zhiyi Wang & Sizhang He & Minghua Zhou & Ruihua Zhang, 2022. "The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-18, February.
    6. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    7. Shirazian, Mohammad, 2023. "A new acceleration of variational iteration method for initial value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 246-259.
    8. Changjun Huang & Lv Zhou & Fenliang Liu & Yuanzhi Cao & Zhong Liu & Yun Xue, 2023. "Deformation Prediction of Dam Based on Optimized Grey Verhulst Model," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    9. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    10. Duan, Huiming & Liu, Yunmei & Wang, Guan, 2022. "A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting," Energy, Elsevier, vol. 251(C).
    11. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    2. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    3. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    4. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    5. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    6. Jia, Zong-qian & Zhou, Zhi-fang & Zhang, Hong-jie & Li, Bo & Zhang, You-xian, 2020. "Forecast of coal consumption in Gansu Province based on Grey-Markov chain model," Energy, Elsevier, vol. 199(C).
    7. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    8. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    9. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    11. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    12. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    13. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    14. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    15. Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
    16. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    18. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    19. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).
    20. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.