IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222009963.html
   My bibliography  Save this article

Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China

Author

Listed:
  • Wang, Yong
  • Chi, Pei
  • Nie, Rui
  • Ma, Xin
  • Wu, Wenqing
  • Guo, Binghong

Abstract

With the increasing power consumption in China and the urgent demand for environmental protection, promoting the development of clean energy power generation industry is the only way to optimize the energy power generation structure. It is very important to effectively predict the development trend of China's clean energy power generation system with complex, changeable and limited data. To address this issue, this paper defines a novel fractional self-adaptive reverse accumulation sequence, and combines discrete modeling techniques and time power terms to propose a novel fractional self-adaptive reverse accumulation with time power terms. The parameter estimation and time response formula of the new model are derived. The matrix perturbation theory is used to prove that the new model satisfies the new information priority principle. The Grey Wolf Optimizer is used to optimize the self-adaptive parameter r and non-negative constant α. Finally, the prediction model is constructed for the power generation capacity of five representative types of clean energy in China: biomass, wind, nuclear, natural gas and hydro power, the prediction result shows that the new model has higher prediction accuracy and data applicability than the other five grey models. According to these prediction results, relevant suggestions on the development of China's clean energy are provided to decision makers.

Suggested Citation

  • Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009963
    DOI: 10.1016/j.energy.2022.124093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
    2. Pali, Bahadur Singh & Vadhera, Shelly, 2018. "A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas," Renewable Energy, Elsevier, vol. 127(C), pages 802-810.
    3. Wen-Yeau Chang, 2013. "Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method," Energies, MDPI, vol. 6(9), pages 1-18, September.
    4. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
    5. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    6. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    7. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaan Zhang & Yan Hao & Ruiqing Fan & Zhenzhen Wang, 2023. "An Ultra-Short-Term PV Power Forecasting Method for Changeable Weather Based on Clustering and Signal Decomposition," Energies, MDPI, vol. 16(7), pages 1-15, March.
    2. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    3. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    4. Hua, Ershi & Sun, Ruyi & Feng, Ping & Song, Lili & Han, Mengyao, 2024. "Optimizing onshore wind power installation within China via geographical multi-objective decision-making," Energy, Elsevier, vol. 307(C).
    5. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    6. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    8. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    9. Ni, Hang & Qu, Xinhe & Sun, Qi & Zhang, Ping & Peng, Wei, 2024. "Thermodynamic analysis of two very-high-temperature gas-cooled reactor-driven hydrogen and electricity cogeneration systems under off-design operating conditions," Energy, Elsevier, vol. 305(C).
    10. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    11. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    12. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    2. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    4. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    5. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    6. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    8. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    9. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    10. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    11. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    12. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    13. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    14. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    15. Yijue Sun & Fenglin Zhang, 2022. "Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    16. Wang, Meng & Wang, Wei & Wu, Lifeng, 2022. "Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China," Energy, Elsevier, vol. 243(C).
    17. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    18. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    19. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.