IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000589.html
   My bibliography  Save this article

Deviation distance entropy: A method for quantifying the dynamic features of biomedical time series

Author

Listed:
  • Yu, Xiao
  • Li, Weimin
  • Yang, Bing
  • Li, Xiaorong
  • Chen, Jie
  • Fu, Guohua

Abstract

Physiological system time series (signals) usually follow a pattern of fluctuations over time. Mining the potential dynamic features of physiological system time series is the key to understanding changes in the state and behavior of physiological systems. In this paper, we propose a new method to measure the complexity of the dynamic features of physiological system time series, namely deviation distance entropy (DE). It achieves the modeling of dynamic features by considering the relationship between current and future segments of the time series and further quantifies their complexity. Through simulation and analysis, we show that DE enables accurate extraction of key features of the signal. Applying the DE method to real electrocardiogram (ECG) signals, we find that DE has a better ability to distinguish between signals from healthy individuals and atrial fibrillation (AF) patients than other methods for measuring sequence irregularities, such as approximate entropy, sample entropy and fuzzy entropy. Further, we propose the idea of “clarity” for the curve of dynamic features. Using “clarity”, we can graphically grade patients with AF according to their ECG signals. According to our numerical analysis, deviation distances for patients with AF follow two different power laws. The magnitude of the difference between these two power laws is positively correlated with the severity of AF onset in the corresponding patients. An in-depth analysis of this phenomenon reveals that it is essentially the development of chaos in the corresponding system, while fluctuations in the corresponding trajectory periods of the mapped attractors can also be observed, which may explain how AF starts and develops. Our study provides a novel perspective for characterizing the time series dynamics of physiological systems.

Suggested Citation

  • Yu, Xiao & Li, Weimin & Yang, Bing & Li, Xiaorong & Chen, Jie & Fu, Guohua, 2023. "Deviation distance entropy: A method for quantifying the dynamic features of biomedical time series," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000589
    DOI: 10.1016/j.chaos.2023.113157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy V. Pyrkov & Konstantin Avchaciov & Andrei E. Tarkhov & Leonid I. Menshikov & Andrei V. Gudkov & Peter O. Fedichev, 2021. "Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Strozzi, Fernanda & Zaldı́var, José-Manuel & Zbilut, Joseph P, 2002. "Application of nonlinear time series analysis techniques to high-frequency currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 520-538.
    3. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiao & Hu, Qunpeng & Li, Jinsong & Li, Weimin & Liu, Tong & Xin, Mingjun & Jin, Qun, 2024. "Decoupling representation contrastive learning for carbon emission prediction and analysis based on time series," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    2. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    3. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    4. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    6. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    8. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    9. Palola, Pirta & Bailey, Richard & Wedding, Lisa, 2022. "A novel framework to operationalise value-pluralism in environmental valuation: Environmental value functions," Ecological Economics, Elsevier, vol. 193(C).
    10. Maeno, Yoshiharu, 2011. "Discovery of a missing disease spreader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3412-3426.
    11. Tousheng Huang & Huayong Zhang & Zhao Liu & Ge Pan & Xiumin Zhang & Zichun Gao, 2019. "Theoretical Study on Self-Organization of Vegetation Patterns Triggered by Water Resource in Deposited Sediment Layer," Complexity, Hindawi, vol. 2019, pages 1-11, July.
    12. Faranda, Davide & Lucarini, Valerio & Manneville, Paul & Wouters, Jeroen, 2014. "On using extreme values to detect global stability thresholds in multi-stable systems: The case of transitional plane Couette flow," Chaos, Solitons & Fractals, Elsevier, vol. 64(C), pages 26-35.
    13. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    14. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    15. Katherine A Spielmann & Matthew A Peeples & Donna M Glowacki & Andrew Dugmore, 2016. "Early Warning Signals of Social Transformation: A Case Study from the US Southwest," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-18, October.
    16. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    17. John P DeLong & Oskar Burger, 2015. "Socio-Economic Instability and the Scaling of Energy Use with Population Size," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    18. Kathrin Viol & Helmut Schöller & Andreas Kaiser & Clemens Fartacek & Wolfgang Aichhorn & Günter Schiepek, 2022. "Detecting pattern transitions in psychological time series – A validation study on the Pattern Transition Detection Algorithm (PTDA)," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-22, March.
    19. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    20. Marian Gidea, 2017. "Topology data analysis of critical transitions in financial networks," Papers 1701.06081, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.