IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20090033.html
   My bibliography  Save this paper

Shallow Lake Economics Run Deep: Nonlinear Aspects of an Economic-Ecological Interest Conflict

Author

Listed:
  • F.O.O. Wagener

    (University of Amsterdam)

Abstract

This discussion paper led to a publication in Computational Management Science , 2013, 10(4), 423-450. Outcomes of the shallow lake interest conflict are presented in a number of different contexts: quasi-static and dynamic social planning, and quasi-static one-shot and repeated non-cooperative play. As the underlying dynamics are non-convex, the analysis uses geometrical-numerical methods: the possible kinds of solutions are efficiently classified in bifurcation diagrams.

Suggested Citation

  • F.O.O. Wagener, 2009. "Shallow Lake Economics Run Deep: Nonlinear Aspects of an Economic-Ecological Interest Conflict," Tinbergen Institute Discussion Papers 09-033/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20090033
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/09033.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karl-Göran Mäler & Anastasios Xepapadeas & Aart de Zeeuw, 2003. "The Economics of Shallow Lakes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 603-624, December.
    2. Wagener, F. O. O., 2003. "Skiba points and heteroclinic bifurcations, with applications to the shallow lake system," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1533-1561, July.
    3. Engelbert Dockner & Florian Wagener, 2014. "Markov perfect Nash equilibria in models with a single capital stock," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 585-625, August.
    4. Brock, William A. & de Zeeuw, Aart, 2002. "The repeated lake game," Economics Letters, Elsevier, vol. 76(1), pages 109-114, June.
    5. Hein, Lars & van Koppen, Kris & de Groot, Rudolf S. & van Ierland, Ekko C., 2006. "Spatial scales, stakeholders and the valuation of ecosystem services," Ecological Economics, Elsevier, vol. 57(2), pages 209-228, May.
    6. Wagener, F.O.O., 2013. "Economics of environmental regime shifts," CeNDEF Working Papers 13-08, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    7. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    8. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    9. Tahvonen, Olli & Salo, Seppo, 1996. "Nonconvexities in Optimal Pollution Accumulation," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 160-177, September.
    10. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    11. Hein, Lars, 2006. "Cost-efficient eutrophication control in a shallow lake ecosystem subject to two steady states," Ecological Economics, Elsevier, vol. 59(4), pages 429-439, October.
    12. Kiseleva, T. & Wagener, F.O.O., 2008. "Bifurcations of optimal vector fields in the shallow lake system," CeNDEF Working Papers 08-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    13. Kiseleva, Tatiana & Wagener, F.O.O., 2010. "Bifurcations of optimal vector fields in the shallow lake model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(5), pages 825-843, May.
    14. Grass, D., 2012. "Numerical computation of the optimal vector field: Exemplified by a fishery model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1626-1658.
    15. W.A. Brock & D. Starrett, 2003. "Managing Systems with Non-convex Positive Feedback," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 575-602, December.
    16. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    17. Salerno, Gillian & McDonald, Stuart & Beard, Rodney, 2007. "The political economy of shallow lakes," 2007 Conference (51st), February 13-16, 2007, Queenstown, New Zealand 10385, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    2. Kiseleva, Tatiana & Wagener, F.O.O., 2010. "Bifurcations of optimal vector fields in the shallow lake model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(5), pages 825-843, May.
    3. Runyan, Christiane W. & D'Odorico, Paolo & Shobe, William, 2015. "The economic impacts of positive feedbacks resulting from deforestation," Ecological Economics, Elsevier, vol. 120(C), pages 93-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    2. Heijnen, P. & Wagener, F.O.O., 2013. "Avoiding an ecological regime shift is sound economic policy," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1322-1341.
    3. Wagener, Florian & de Zeeuw, Aart, 2021. "Stable partial cooperation in managing systems with tipping points," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    4. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A., 2011. "On the optimal taxation of common-pool resources," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1868-1879.
    5. Wagener, F.O.O., 2013. "Economics of environmental regime shifts," CeNDEF Working Papers 13-08, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    6. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    7. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    8. Tatiana Kiseleva & Florian Wagener, 2015. "Bifurcations of Optimal Vector Fields," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 24-55, February.
    9. Aart Zeeuw & Chuan-Zhong Li, 2016. "The Economics of Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 513-517, November.
    10. Yuri Yegorov & Dieter Grass & Magda Mirescu & Gustav Feichtinger & Franz Wirl, 2020. "Growth and Collapse of Empires: A Dynamic Optimization Model," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 620-643, August.
    11. Salerno, Gillian & Beard, Rodney & McDonald, Stuart, 2007. "Rent Seeking Behavior and Optimal Taxation of Pollution in Shallow Lakes," MPRA Paper 11225, University Library of Munich, Germany, revised 22 Oct 2008.
    12. Zeiler, I. & Caulkins, J.P. & Tragler, G., 2011. "Optimal control of interacting systems with DNSS property: The case of illicit drug use," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1), pages 60-73.
    13. Engelbert Dockner & Florian Wagener, 2014. "Markov perfect Nash equilibria in models with a single capital stock," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 585-625, August.
    14. Johannus Janmaat, 2012. "Fishing in a Shallow Lake: Exploring a Classic Fishery Model in a Habitat with Shallow Lake Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 215-239, February.
    15. Herbert Dawid & Michel Y. Keoula & Peter M. Kort, 2017. "Numerical Analysis of Markov-Perfect Equilibria with Multiple Stable Steady States: A Duopoly Application with Innovative Firms," Dynamic Games and Applications, Springer, vol. 7(4), pages 555-577, December.
    16. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    17. Tatiana Kiseleva, 2016. "Heterogeneous Beliefs and Climate Catastrophes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 599-622, November.
    18. Anastasios Xepapadeas, 2010. "Modeling complex systems," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 181-191, November.
    19. Wirl, Franz & Feichtinger, Gustav, 2005. "History dependence in concave economies," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 390-407, August.
    20. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.

    More about this item

    Keywords

    Shallow lake; optimal management; dynamic games; bifurcation analysis;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20090033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.