IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922012383.html
   My bibliography  Save this article

Synchronization of reaction–diffusion neural networks with sampled-data control via a new two-sided looped-functional

Author

Listed:
  • Huan, Mingchen
  • Li, Chuandong

Abstract

In this paper, the exponential synchronization problem of reaction–diffusion neural networks with sampled-data control is addressed via looped-functional approach. Considering the transmission delay of sampled-data controller, a two-sided looped-functional is designed to obtain the synchronization conditions, which are less conservative than those with the traditional Lyapunov method. The research results are applied to Takagi–Sugeno (T–S) fuzzy models with reaction–diffusion terms. Three numerical examples are presented to show the feasibility and effectiveness of our methods.

Suggested Citation

  • Huan, Mingchen & Li, Chuandong, 2023. "Synchronization of reaction–diffusion neural networks with sampled-data control via a new two-sided looped-functional," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012383
    DOI: 10.1016/j.chaos.2022.113059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922012383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.113059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Shiju & Li, Chuandong & He, Xiping & Zhang, Wanli, 2022. "Variable-time impulsive control for bipartite synchronization of coupled complex networks with signed graphs," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    3. Huan, Mingchen & Li, Chuandong, 2022. "Stability analysis of state-dependent impulsive systems via a new two-sided looped functional," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
    5. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    6. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2024. "Improvement of sampled-data-based stabilization and dissipativity conditions for T–S fuzzy systems under network communication environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Gao, Zifan & Zhang, Dawei & Zhu, Shuqian, 2023. "Hybrid event-triggered synchronization control of delayed chaotic neural networks against communication delay and random data loss," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Karnan, A. & Nagamani, G., 2023. "Event-triggered extended dissipative synchronization for delayed neural networks with random uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    2. Zhang, He & Xu, Shengyuan & Zhang, Zhengqiang & Chu, Yuming, 2022. "Practical stability of a nonlinear system with delayed control input," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    3. Huang, Yi-Bo & He, Yong, 2022. "Bessel-type inequality in semi-inner-product spaces and its application to stability analysis of discrete-time systems with distributed delays," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    5. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    6. Cheng Zhang & Chuan Zhang & Fanwei Meng & Yi Liang, 2023. "Event-Triggered Control for Intra/Inter-Layer Synchronization and Quasi-Synchronization in Two-Layer Coupled Networks," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    7. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Yang, Yi & Chen, Fei & Lang, Jiahong & Chen, Xiangyong & Wang, Jing, 2021. "Sliding mode control of persistent dwell-time switched systems with random data dropouts," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    10. Vadivel, R. & Sabarathinam, S. & Wu, Yongbao & Chaisena, Kantapon & Gunasekaran, Nallappan, 2022. "New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Shi, Sangli & Wang, Zhengxin & Song, Qiang & Xiao, Min & Jiang, Guo-Ping, 2022. "Leader-following quasi-bipartite synchronization of coupled heterogeneous harmonic oscillators via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    12. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Dong-Hoon Lee & Yeong-Jae Kim & Seung-Hoon Lee & Oh-Min Kwon, 2024. "Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
    14. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    16. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    17. Anto Anbarasu Yesudhas & Seong Ryong Lee & Jae Hoon Jeong & Narayanan Govindasami & Young Hoon Joo, 2024. "The Stabilization of a Nonlinear Permanent-Magnet- Synchronous-Generator-Based Wind Energy Conversion System via Coupling-Memory-Sampled Data Control with a Membership-Function-Dependent H ∞ Approach," Energies, MDPI, vol. 17(15), pages 1-21, July.
    18. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    19. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Zhong, Qishui & Han, Sheng & Shi, Kaibo & Zhong, Shouming & Cai, Xiao & Kwon, Oh-Min, 2022. "Distributed secure sampled-data control for distributed generators and energy storage systems in microgrids under abnormal deception attacks," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.