IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924005903.html
   My bibliography  Save this article

A new 3D robust chaotic mapping and its application to speech encryption

Author

Listed:
  • Huang, Yibo
  • Wang, Ling
  • Li, Zhiyong
  • Zhang, Qiuyu

Abstract

Aiming at the problem that speech information has a strong correlation in adjacent times and the data type is floating point, the image encryption algorithm of integer type is not suitable for speech encryption. This paper proposed a speech encryption algorithm based on robust chaotic mapping, which mainly utilizes the nonlinearities and dynamics of robust chaos to adapt to the characteristics of speech signals. Furthermore, a new 3D sine robust chaotic mapping (3D-SRCM) model is proposed in this paper, which effectively solves the problems of discontinuous parameter ranges, prone to chaotic degradation and lack of robustness in existing chaotic systems, and improves the robustness and complexity of chaos. In the speech encryption algorithm, the parameters of the chaotic mapping are adjusted according to the changes in speech signal characteristics to generate unique keys for different speech signals. The encryption algorithm compresses and denoises the signal through the Fast Walsh–Hadamard Transform (FWHT) before using chaotic sequences for initial scrambling encryption. Then, the signal is transformed by Discrete Wavelet Transform (DWT) to realize the second round of scrambling and diffusion encryption. This structure increases the security of the encryption algorithm and ensures the efficiency and reliability of the encryption process. The experimental results show that the algorithm has a large key space, good resistance to exhaustive attack, and statistical attack, which can effectively resist chosen plaintext attack. In the decryption process, the algorithm can quickly and accurately decrypt the encrypted speech with good decryption performance.

Suggested Citation

  • Huang, Yibo & Wang, Ling & Li, Zhiyong & Zhang, Qiuyu, 2024. "A new 3D robust chaotic mapping and its application to speech encryption," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005903
    DOI: 10.1016/j.chaos.2024.115038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.