Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112133
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
- Liu, Hongjun & Kadir, Abdurahman & Xu, Chengbo, 2020. "Cryptanalysis and constructing S-Box based on chaotic map and backtracking," Applied Mathematics and Computation, Elsevier, vol. 376(C).
- Fei Yu & Li Liu & Hui Shen & Zinan Zhang & Yuanyuan Huang & Shuo Cai & Zelin Deng & Qiuzhen Wan, 2020. "Multistability Analysis, Coexisting Multiple Attractors, and FPGA Implementation of Yu–Wang Four-Wing Chaotic System," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Wu, Rui & Gao, Suo & Wang, Xingyuan & Liu, Songbo & Li, Qi & Erkan, Uğur & Tang, Xianglong, 2022. "AEA-NCS: An audio encryption algorithm based on a nested chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
- Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
- Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xiaoyuan & Gao, Meng & Iu, Herbert Ho-Ching & Wang, Chunhua, 2022. "Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Hemalatha Mahalingam & Thanikaiselvan Veeramalai & Anirudh Rajiv Menon & Subashanthini S. & Rengarajan Amirtharajan, 2023. "Dual-Domain Image Encryption in Unsecure Medium—A Secure Communication Perspective," Mathematics, MDPI, vol. 11(2), pages 1-23, January.
- Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Hu, Chenyang & Wang, Qiao & Zhang, Xiefu & Tian, Zean & Wu, Xianming, 2022. "A new chaotic system with novel multiple shapes of two-channel attractors," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Liu, Xilin & Tong, Xiaojun & Zhang, Miao & Wang, Zhu, 2023. "A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Hemalatha Mahalingam & Sivaraman Rethinam & Siva Janakiraman & Amirtharajan Rengarajan, 2023. "Non-Identical Inverter Rings as an Entropy Source: NIST-90B-Verified TRNG Architecture on FPGAs for IoT Device Integrity," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
- Jose-Cruz Nuñez-Perez & Vincent-Ademola Adeyemi & Yuma Sandoval-Ibarra & Francisco-Javier Perez-Pinal & Esteban Tlelo-Cuautle, 2021. "Maximizing the Chaotic Behavior of Fractional Order Chen System by Evolutionary Algorithms," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
- Zain-Aldeen S. A. Rahman & Basil H. Jasim & Yasir I. A. Al-Yasir & Yim-Fun Hu & Raed A. Abd-Alhameed & Bilal Naji Alhasnawi, 2021. "A New Fractional-Order Chaotic System with Its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications," Mathematics, MDPI, vol. 9(20), pages 1-25, October.
- Louzzani, Noura & Boukabou, Abdelkrim & Bahi, Halima & Boussayoud, Ali, 2021. "A novel chaos based generating function of the Chebyshev polynomials and its applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "A new multi-wing chaotic attractor with unusual variation in the number of wings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
- Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
- Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
- Biamou, Arsene Loic Mbanda & Tamba, Victor Kamdoum & Tagne, François Kapche & Takougang, Armand Cyrille Nzeukou, 2024. "Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
- Bezerra, João Inácio Moreira & Machado, Gustavo & Molter, Alexandre & Soares, Rafael Iankowski & Camargo, Vinícius, 2023. "A novel simultaneous permutation–diffusion image encryption scheme based on a discrete space map," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
More about this item
Keywords
Fractional-order hyperchaotic laser system; Circuit implementation; Image encryption; Improved shuffling; DNA mutation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003435. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.