IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000419.html
   My bibliography  Save this article

Interplay of simplicial information propagation and epidemic spreading on multiplex metapopulation networks

Author

Listed:
  • Zhang, Kebo
  • Hong, Xiao
  • Han, Yuexing
  • Wang, Bing

Abstract

Disease-related information inevitably enhances people’s awareness to prevent themselves from being infected. The traditional information propagation mainly presents in the form of individual to individual, without revealing the effects of herd-awareness on individuals. That is, individuals can perceive the disease-related information not only from their resident herd but also surrounding high-order herds. Thus, to further explore the effects information propagation of herd-awareness on spatial spreading of the epidemic, we construct a two-layer metapopulation network model, in which the upper layer is responsible for the information propagation by the patterns of self-herd awareness (0-simplex), neighboring herd awareness (1-simplex), and high-order herd-awareness (2-simplex), while the lower layer is responsible for spatial spreading of the epidemic.The results show that strengthening self-herd awareness can properly curb the epidemic spreading, and enhancing neighboring herd-awareness propagation apparently decrease the final infection scale. Nevertheless, enhancing high-order herd-awareness of 2-simplex propagation is not evident. This study may provide helpful guidance for the intervention of the epidemic in reality.

Suggested Citation

  • Zhang, Kebo & Hong, Xiao & Han, Yuexing & Wang, Bing, 2024. "Interplay of simplicial information propagation and epidemic spreading on multiplex metapopulation networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000419
    DOI: 10.1016/j.chaos.2024.114490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    2. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Colin J. Worby & Hsiao-Han Chang, 2020. "Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Author Correction: Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    5. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    7. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Lv, Xijian & Fan, Dongmei & Yang, Junxian & Li, Qiang & Zhou, Li, 2024. "Delay differential equation modeling of social contagion with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    7. Xu, Yan & Zhao, Dawei & Chen, Jiaxing & Liu, Tao & Xia, Chengyi, 2024. "The nested structures of higher-order interactions promote the cooperation in complex social networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    12. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    13. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    14. Fang, Fanshu & Ma, Jing & Ma, Yin-Jie & Boccaletti, Stefano, 2024. "Social contagion on higher-order networks: The effect of relationship strengths," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    15. Zhang, Renquan & Wei, Ting & Sun, Yifan & Pei, Sen, 2024. "Influence maximization based on simplicial contagion models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    16. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    18. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    20. Zheng, Wenxin & Gu, Changgui & Xu, Yan & Yang, Huijie, 2023. "Entrainment range affected by the second-order interactions between coupled neuron oscillators in the suprachiasmatic nucleus," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.