IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v439y2023ics0096300322007056.html
   My bibliography  Save this article

A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays

Author

Listed:
  • Chen, Yonghui
  • Xue, Yu
  • Yang, Xiaona
  • Zhang, Xian

Abstract

This paper mainly studies the global exponential stability in Lagrange sense (GESLS) of quaternion memristive neural networks (QMNNs) with leakage delays, unbounded distributed delays and time-varying discrete time delays. In the process of research, instead of traditional decomposition into real-valued memristive neural networks (RMNNs) or complex-valued memristive neural networks (CMNNs), we consider the QMNN as a whole, and then give a sufficient condition related to time delays to ensure that the considered QMNN is GESLS. An example is provided to illustrate validity of theoretical results obtained in the end. The method proposed in the present text has two merits: (1) According to the definition of GESLS directly, no Lyapunov–Krasovskii functional (LKF) is required, which avoids massive calculations and solutions of high-dimensional matrix inequalities; (2) It is available not only to QMNNs, but also to RMNNs and CMNNs.

Suggested Citation

  • Chen, Yonghui & Xue, Yu & Yang, Xiaona & Zhang, Xian, 2023. "A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 439(C).
  • Handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322007056
    DOI: 10.1016/j.amc.2022.127633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Hanqi Shu & Qiankun Song & Jing Liang & Zhenjiang Zhao & Yurong Liu & Fuad E. Alsaadi, 2019. "Global exponential stability in Lagrange sense for quaternion-valued neural networks with leakage delay and mixed time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(4), pages 858-870, March.
    3. Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Udhayakumar, K. & Rakkiyappan, R. & Li, Xiaodi & Cao, Jinde, 2021. "Mutiple ψ-type stability of fractional-order quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    5. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    6. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    7. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    2. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    2. Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
    3. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    4. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Yang, Jinrong & Chen, Guici & Wen, Shiping & Wang, Leimin, 2023. "Finite-time dissipative control for discrete-time memristive neural networks via interval matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    7. Chang, Shuang & Wang, Yantao & Zhang, Xian & Wang, Xin, 2023. "A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 329-340.
    8. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    9. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    10. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    11. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    16. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    17. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    18. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Stavrinides, Stavros G. & Hanias, Michael P. & Gonzalez, Mireia B. & Campabadal, Francesca & Contoyiannis, Yiannis & Potirakis, Stelios M. & Al Chawa, Mohamad Moner & de Benito, Carol & Tetzlaff, Rona, 2022. "On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322007056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.