IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306007.html
   My bibliography  Save this article

Theoretical study of the blood flow in arteries in the presence of magnetic particles and under periodic body acceleration

Author

Listed:
  • Awrejcewicz, Jan
  • Zafar, Azhar Ali
  • Kudra, Grzegorz
  • Riaz, Muhammad Bilal

Abstract

In this article, the dynamics of blood with suspended magnetic particles in coronal and femoral arteries are investigated. The flow of blood is examined in the presence of external magnetic field, periodic body acceleration and a pressure gradient of an oscillating type. Expressions for the velocity of blood and velocity of magnetic particles will be yielded by employing integral transforms. The analytical results will be expressed in terms of steady-state and transient parts. Moreover, to get insight of the control of the material parameters such as amplitude, the lead angle, frequency of body acceleration, magnetic field and particles’ concentration parameter, numerical simulations and graphical illustrations will be used and useful consequences will be summarized.

Suggested Citation

  • Awrejcewicz, Jan & Zafar, Azhar Ali & Kudra, Grzegorz & Riaz, Muhammad Bilal, 2020. "Theoretical study of the blood flow in arteries in the presence of magnetic particles and under periodic body acceleration," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306007
    DOI: 10.1016/j.chaos.2020.110204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Batistela, Cristiane M. & Correa, Diego P.F. & Bueno, Átila M & Piqueira, José Roberto C., 2021. "SIRSi compartmental model for COVID-19 pandemic with immunity loss," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Abdullahi, Auwal, 2021. "Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Ogunmiloro, Oluwatayo Michael, 2021. "Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Srivastava, H.M. & Saad, Khaled M. & Khader, M.M., 2020. "An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Rajagopal, Karthikeyan & Wei, Zhouchao & Moroz, Irene & Karthikeyan, Anitha & Duraisamy, Prakash, 2020. "Elimination of spiral waves in a one-layer and two-layer network of pancreatic beta cells using a periodic stimuli," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.