IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/5337255.html
   My bibliography  Save this article

Approximate and Exact Solutions to Fractional Order Cauchy Reaction-Diffusion Equations by New Combine Techniques

Author

Listed:
  • Adnan Khan
  • Muhammad Imran Liaqat
  • Muhammad Younis
  • Ashraful Alam
  • Fairouz Tchier

Abstract

In this paper, we present a simple and efficient novel semianalytic method to acquire approximate and exact solutions for the fractional order Cauchy reaction-diffusion equations (CRDEs). The fractional order derivative operator is measured in the Caputo sense. This novel method is based on the combinations of Elzaki transform method (ETM) and residual power series method (RPSM). The proposed method is called Elzaki residual power series method (ERPSM). The proposed method is based on the new form of fractional Taylor’s series, which constructs solution in the form of a convergent series. As in the RPSM, during establishing the coefficients for a series, it is required to compute the fractional derivatives every time. While ERPSM only requires the concept of the limit at zero in establishing the coefficients for the series, consequently scarce calculations give us the coefficients. The recommended method resolves nonlinear problems deprived of utilizing Adomian polynomials or He’s polynomials which is the advantage of this method over Adomain decomposition method (ADM) and homotopy-perturbation method (HTM). To study the effectiveness and reliability of ERPSM for partial differential equations (PDEs), absolute errors of three problems are inspected. In addition, numerical and graphical consequences are also recognized at diverse values of fractional order derivatives. Outcomes demonstrate that our novel method is simple, precise, applicable, and effectual.

Suggested Citation

  • Adnan Khan & Muhammad Imran Liaqat & Muhammad Younis & Ashraful Alam & Fairouz Tchier, 2021. "Approximate and Exact Solutions to Fractional Order Cauchy Reaction-Diffusion Equations by New Combine Techniques," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, December.
  • Handle: RePEc:hin:jjmath:5337255
    DOI: 10.1155/2021/5337255
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5337255.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5337255.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5337255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaqat, Muhammad Imran & Khan, Adnan & Akgül, Ali, 2022. "Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:5337255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.