IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006257.html
   My bibliography  Save this article

Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs

Author

Listed:
  • Minati, Ludovico
  • Bartels, Jim
  • Li, Chao
  • Frasca, Mattia
  • Ito, Hiroyuki

Abstract

Transistor-based chaotic oscillators are known to realize highly diverse dynamics despite having elementary circuit topologies. This work investigates, numerically and experimentally using a ring network, a recently-introduced dual-transistor circuit that generates neural-like spike trains. A multitude of non-trivial effects are observed as a function of the supply voltage and coupling strength, including pattern formation under incomplete synchronization and sensitivity to additional long-distance links. Globally-applied noise exerts a synchronizing effect that interacts with the other control parameters. When the network is partitioned in halves at different levels of granularity, their interplay gives rise to adversarial route-to-synchronization phenomena. These results highlight the generative ability of this circuit and motivate its consideration towards the future realization of physical reservoirs.

Suggested Citation

  • Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006257
    DOI: 10.1016/j.chaos.2022.112415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis M. Pecora & Francesco Sorrentino & Aaron M. Hagerstrom & Thomas E. Murphy & Rajarshi Roy, 2014. "Cluster synchronization and isolated desynchronization in complex networks with symmetries," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Mario Antoine Aoun & Mounir Boukadoum, 2015. "Chaotic Liquid State Machine," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 9(4), pages 1-20, October.
    3. Sevilla-Escoboza, R. & Buldú, J.M. & Boccaletti, S. & Papo, D. & Hwang, D.-U. & Huerta-Cuellar, G. & Gutiérrez, R., 2016. "Experimental implementation of maximally synchronizable networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 113-121.
    4. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Gambuzza, L.V. & Minati, L. & Frasca, M., 2020. "Experimental observations of chimera states in locally and non-locally coupled Stuart-Landau oscillator circuits," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minati, Ludovico & Li, Chao & Bartels, Jim & Chakraborty, Parthojit & Li, Zixuan & Yoshimura, Natsue & Frasca, Mattia & Ito, Hiroyuki, 2023. "Accelerometer time series augmentation through externally driving a non-linear dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minati, Ludovico & Li, Boyan & Bartels, Jim & Li, Zixuan & Frasca, Mattia & Ito, Hiroyuki, 2022. "Incomplete synchronization of chaos under frequency-limited coupling: Observations in single-transistor microwave oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Tlaie, A. & Ballesteros-Esteban, L.M. & Leyva, I. & Sendiña-Nadal, I., 2019. "Statistical complexity and connectivity relationship in cultured neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 284-290.
    4. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    5. Yang, J. & Primo, E. & Aleja, D. & Criado, R. & Boccaletti, S. & Alfaro-Bittner, K., 2022. "Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Graciela Schiliuk & Iader Giraldo, 2021. "Regional responses to the Covid-19 crisis: a comparative study from economic, policy, and institutional perspectives," Documentos de Discusión FLAR 19734, Fondo Latino Americano de Reservas - FLAR.
    9. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Chiu, R. & López-Mancilla, D. & Castañeda, Carlos E. & Orozco-López, Onofre & Villafaña-Rauda, E. & Sevilla-Escoboza, R., 2019. "Design and implementation of a jerk circuit using a hybrid analog–digital system," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 255-262.
    11. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Ye, Jiachen & Ji, Peng & Waxman, David & Lin, Wei & Moreno, Yamir, 2020. "Impact of intra and inter-cluster coupling balance on the performance of nonlinear networked systems," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Atiyeh Bayani & Fahimeh Nazarimehr & Sajad Jafari & Kirill Kovalenko & Gonzalo Contreras-Aso & Karin Alfaro-Bittner & Rubén J. Sánchez-García & Stefano Boccaletti, 2024. "The transition to synchronization of networked systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Chai, Yuan & Xu, Li & Zhang, Hudong, 2021. "Interchangeable outer synchronization of community networks with two spatiotemporal clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    15. Tommaso Menara & Giacomo Baggio & Dani Bassett & Fabio Pasqualetti, 2022. "Functional control of oscillator networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Muolo, Riccardo & Carletti, Timoteo & Bianconi, Ginestra, 2024. "The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Tao Wu & Xiangyun Gao & Feng An & Xiaotian Sun & Haizhong An & Zhen Su & Shraddha Gupta & Jianxi Gao & Jürgen Kurths, 2024. "Predicting multiple observations in complex systems through low-dimensional embeddings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Shepelev, I.A. & Vadivasova, T.E., 2021. "Synchronization in multiplex networks of chaotic oscillators with frequency mismatch," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    19. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.