IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303076.html
   My bibliography  Save this article

Experimental observations of chimera states in locally and non-locally coupled Stuart-Landau oscillator circuits

Author

Listed:
  • Gambuzza, L.V.
  • Minati, L.
  • Frasca, M.

Abstract

Nontrivial spatiotemporal patterns emerge across many systems of interacting oscillators, still the number of experimental investigations remains relatively limited. In this paper, we consider an experimental setup of ten electronic circuits, each of which modeling a Stuart-Landau oscillator, and investigate different arrangements of their interactions under diverse settings of the coupling strength, which acts as a bifurcation parameter for the system. We introduce a set of three empirical measures, allowing the straightforward classification of synchronization states in this system. We observe a rich repertoire of synchronization patterns, including global synchronization, oscillation death, chimera states and traveling waves, spontaneously breaking the symmetry of the configuration. Interestingly, the intervals of the bifurcation parameter wherein these states are observed overlap, revealing multiple regions of multistability. Our experimental results also allow drawing important conclusions on the chimera states observed, showing that i) they can be consistently observed in a system of relatively low size, ii) they are stable, iii) their basin of attraction is large enough to encompass the ’normal’ operating conditions of the circuit, iv) their emergence is not appreciably influenced by small heterogeneities between units due to parametric tolerances.

Suggested Citation

  • Gambuzza, L.V. & Minati, L. & Frasca, M., 2020. "Experimental observations of chimera states in locally and non-locally coupled Stuart-Landau oscillator circuits," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303076
    DOI: 10.1016/j.chaos.2020.109907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.