IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v154y2022ics0960077921010535.html
   My bibliography  Save this article

Gompertz model in COVID-19 spreading simulation

Author

Listed:
  • Pelinovsky, E.
  • Kokoulina, M.
  • Epifanova, A.
  • Kurkin, A.
  • Kurkina, O.
  • Tang, M.
  • Macau, E.
  • Kirillin, M.

Abstract

The paper reports on application of the Gompertz model to describe the growth dynamics of COVID-19 cases during the first wave of the pandemic in different countries. Modeling has been performed for 23 countries: Australia, Austria, Belgium, Brazil, Great Britain, Germany, Denmark, Ireland, Spain, Italy, Canada, China, the Netherlands, Norway, Serbia, Turkey, France, Czech Republic, Switzerland, South Korea, USA, Mexico, and Japan. The model parameters are determined by regression analysis based on official World Health Organization data available for these countries. The comparison of the predictions given by the Gompertz model and the simple logistic model (i.e., Verhulst model) is performed allowing to conclude on the higher accuracy of the Gompertz model.

Suggested Citation

  • Pelinovsky, E. & Kokoulina, M. & Epifanova, A. & Kurkin, A. & Kurkina, O. & Tang, M. & Macau, E. & Kirillin, M., 2022. "Gompertz model in COVID-19 spreading simulation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921010535
    DOI: 10.1016/j.chaos.2021.111699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bratati Chakraborty & Sabyasachi Bhattacharya & Ayanendranath Basu & Subhadip Bandyopadhyay & Amit Bhattacharjee, 2014. "Goodness-of-fit testing for the Gompertz growth curve model," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 45-64, April.
    2. Consolini, Giuseppe & Materassi, Massimo, 2020. "A stretched logistic equation for pandemic spreading," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Se Yoon Lee & Bowen Lei & Bani Mallick, 2020. "Estimation of COVID-19 spread curves integrating global data and borrowing information," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    5. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Wang, Qiubao & Hu, Zhouyu & Yang, Yanling & Zhang, Congqing & Han, Zikun, 2023. "The impact of memory effect on time-delay logistic systems driven by a class of non-Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Perrier, Frédéric & Girault, Frédéric, 2022. "Scaling and fine structure of superstable periodic orbits in the logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Calatayud, Julia & Jornet, Marc & Mateu, Jorge & Pinto, Carla M.A., 2023. "A new population model for urban infestations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Conceição Leal & Leonel Morgado & Teresa A. Oliveira, 2023. "Mathematical and Statistical Modelling for Assessing COVID-19 Superspreader Contagion: Analysis of Geographical Heterogeneous Impacts from Public Events," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    6. Christian Alemán & Christopher Busch & Alexander Ludwig & Raül Santaeulà lia-Llopis, 2020. "Evaluating the Effectiveness of Policies Against a Pandemic," Working Papers 2020-078, Human Capital and Economic Opportunity Working Group.
    7. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    8. Kundu, Sayani & Dasgupta, Nirjhar & Chakraborty, Bratati & Paul, Ayan & Ray, Santanu & Bhattacharya, Sabyasachi, 2021. "Growth acceleration is the key for identifying the most favorable food concentration of Artemia sp," Ecological Modelling, Elsevier, vol. 455(C).
    9. Stef Baas & Sander Dijkstra & Aleida Braaksma & Plom Rooij & Fieke J. Snijders & Lars Tiemessen & Richard J. Boucherie, 2021. "Real-time forecasting of COVID-19 bed occupancy in wards and Intensive Care Units," Health Care Management Science, Springer, vol. 24(2), pages 402-419, June.
    10. Lei Zhang & Guang-Hui She & Yu-Rong She & Rong Li & Zhen-Su She, 2022. "Quantifying Social Interventions for Combating COVID-19 via a Symmetry-Based Model," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    11. Roy, Trina & Ghosh, Sinchan & Bhattacharya, Sabyasachi, 2022. "A new growth curve model portraying the stress response regulation of fish: Illustration through particle motion and real data," Ecological Modelling, Elsevier, vol. 470(C).
    12. Samadder, Amit & Chattopadhyay, Arnab & Sau, Anurag & Bhattacharya, Sabyasachi, 2024. "Interconnection between density-regulation and stability in competitive ecological network," Theoretical Population Biology, Elsevier, vol. 157(C), pages 33-46.
    13. Demetrius E. Davos & Ioannis C. Demetriou, 2022. "Convex-Concave fitting to successively updated data and its application to covid-19 analysis," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3233-3262, December.
    14. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
    15. Otunuga, Olusegun Michael, 2021. "Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Daniele Lilleri & Federica Zavaglio & Elisa Gabanti & Giuseppe Gerna & Eloisa Arbustini, 2020. "Analysis of the SARS-CoV-2 epidemic in Italy: The role of local and interventional factors in the control of the epidemic," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-12, November.
    17. Dijkstra, Sander & Baas, Stef & Braaksma, Aleida & Boucherie, Richard J., 2023. "Dynamic fair balancing of COVID-19 patients over hospitals based on forecasts of bed occupancy," Omega, Elsevier, vol. 116(C).
    18. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Ángel Berihuete & Marta Sánchez-Sánchez & Alfonso Suárez-Llorens, 2021. "A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    20. Se Yoon Lee, 2022. "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications," Mathematics, MDPI, vol. 10(6), pages 1-51, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921010535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.