IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v157y2024icp33-46.html
   My bibliography  Save this article

Interconnection between density-regulation and stability in competitive ecological network

Author

Listed:
  • Samadder, Amit
  • Chattopadhyay, Arnab
  • Sau, Anurag
  • Bhattacharya, Sabyasachi

Abstract

In natural ecosystems, species can be characterized by the nonlinear density-dependent self-regulation of their growth profile. Species of many taxa show a substantial density-dependent reduction for low population size. Nevertheless, many show the opposite trend; density regulation is minimal for small populations and increases significantly when the population size is near the carrying capacity. The theta-logistic growth equation can portray the intraspecific density regulation in the growth profile, theta being the density regulation parameter. In this study, we examine the role of these different growth profiles on the stability of a competitive ecological community with the help of a mathematical model of competitive species interactions. This manuscript deals with the random matrix theory to understand the stability of the classical theta-logistic models of competitive interactions. Our results suggest that having more species with strong density dependence, which self-regulate at low densities, leads to more stable communities. With this, stability also depends on the complexity of the ecological network. Species network connectance (link density) shows a consistent trend of increasing stability, whereas community size (species richness) shows a context-dependent effect. We also interpret our results from the aspect of two different life history strategies: r and K-selection. Our results show that the stability of a competitive network increases with the fraction of r-selected species in the community. Our result is robust, irrespective of different network architectures.

Suggested Citation

  • Samadder, Amit & Chattopadhyay, Arnab & Sau, Anurag & Bhattacharya, Sabyasachi, 2024. "Interconnection between density-regulation and stability in competitive ecological network," Theoretical Population Biology, Elsevier, vol. 157(C), pages 33-46.
  • Handle: RePEc:eee:thpobi:v:157:y:2024:i:c:p:33-46
    DOI: 10.1016/j.tpb.2024.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominique Gravel & François Massol & Mathew A. Leibold, 2016. "Stability and complexity in model meta-ecosystems," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    2. Stefano Allesina & Si Tang, 2012. "Stability criteria for complex ecosystems," Nature, Nature, vol. 483(7388), pages 205-208, March.
    3. Bhowmick, Amiya Ranjan & Saha, Bapi & Chattopadhyay, Joydev & Ray, Santanu & Bhattacharya, Sabyasachi, 2015. "Cooperation in species: Interplay of population regulation and extinction through global population dynamics database," Ecological Modelling, Elsevier, vol. 312(C), pages 150-165.
    4. Kevin Shear McCann, 2000. "The diversity–stability debate," Nature, Nature, vol. 405(6783), pages 228-233, May.
    5. Ross, J.V., 2009. "A note on density dependence in population models," Ecological Modelling, Elsevier, vol. 220(23), pages 3472-3474.
    6. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundu, Sayani & Dasgupta, Nirjhar & Chakraborty, Bratati & Paul, Ayan & Ray, Santanu & Bhattacharya, Sabyasachi, 2021. "Growth acceleration is the key for identifying the most favorable food concentration of Artemia sp," Ecological Modelling, Elsevier, vol. 455(C).
    2. Qinghua Zhao & Paul J. Brink & Chi Xu & Shaopeng Wang & Adam T. Clark & Canan Karakoç & George Sugihara & Claire E. Widdicombe & Angus Atkinson & Shin-ichiro S. Matsuzaki & Ryuichiro Shinohara & Shuiq, 2023. "Relationships of temperature and biodiversity with stability of natural aquatic food webs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Donohue, Ian & Coscieme, Luca & Gellner, Gabriel & Yang, Qiang & Jackson, Andrew L. & Kubiszewski, Ida & Costanza, Robert & McCann, Kevin S., 2023. "Accelerated economic recovery in countries powered by renewables," Ecological Economics, Elsevier, vol. 212(C).
    4. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Roy, Trina & Ghosh, Sinchan & Bhattacharya, Sabyasachi, 2022. "A new growth curve model portraying the stress response regulation of fish: Illustration through particle motion and real data," Ecological Modelling, Elsevier, vol. 470(C).
    6. Clenet, Maxime & El Ferchichi, Hafedh & Najim, Jamal, 2022. "Equilibrium in a large Lotka–Volterra system with pairwise correlated interactions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 423-444.
    7. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    8. Ilan Vertinsky & Yingqiu Kuang & Dongsheng Zhou & Victor Cui, 2023. "The political economy and dynamics of bifurcated world governance and the decoupling of value chains: An alternative perspective," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 54(7), pages 1351-1377, September.
    9. Bastazini, Vinicius Augusto Galvão & Debastiani, Vanderlei & Cappelatti, Laura & Guimarães, Paulo & Pillar, Valério D., 2022. "The role of evolutionary modes for trait-based cascades in mutualistic networks," Ecological Modelling, Elsevier, vol. 470(C).
    10. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    11. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    12. Pelinovsky, E. & Kokoulina, M. & Epifanova, A. & Kurkin, A. & Kurkina, O. & Tang, M. & Macau, E. & Kirillin, M., 2022. "Gompertz model in COVID-19 spreading simulation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    13. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    14. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    15. Mendes, Pedro B. & Faria, Lucas D.B., 2020. "The eco-evolutionary dynamics of a predator-prey system across an r/K continuum," Ecological Modelling, Elsevier, vol. 436(C).
    16. Zhu, Haoqi & Wang, Maoxiang & Hu, Fenglan, 2018. "Interaction and coexistence with self-regulating species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 447-458.
    17. Qiang Gao & Man Jiang, 2024. "Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4043-4070, July.
    18. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.
    20. dos Anjos, Lucas & Weber, Igor Daniel & Godoy, Wesley Augusto Conde, 2023. "Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour," Ecological Modelling, Elsevier, vol. 484(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:157:y:2024:i:c:p:33-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.