IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v147y2016icp123-131.html
   My bibliography  Save this article

A new kind of sensitivity index for multivariate output

Author

Listed:
  • Li, Luyi
  • Lu, Zhenzhou
  • Wu, Danqing

Abstract

Mathematical and computational models with correlated multivariate output are commonly used for risk assessment and decision support in engineering. Traditional methods for sensitivity analysis of the model with scalar output fail to provide satisfactory results for this multivariate case. In this work, we introduce a new sensitivity index which looks at the influence of input uncertainty on the entire distribution of the multivariate output without reference to a specific moment of the output. The definition of the new index is based on the multivariate probability integral transformation (PIT), which can take into account both of the uncertainties and the correlations among multivariate output. The mathematical properties of the proposed sensitivity index are discussed and its differences with the sensitivity indices previously introduced in the literature are highlighted. Two numerical examples and a rotating shaft model of an aircraft wing are employed to illustrate the validity and potential benefits of the new sensitivity index.

Suggested Citation

  • Li, Luyi & Lu, Zhenzhou & Wu, Danqing, 2016. "A new kind of sensitivity index for multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 123-131.
  • Handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:123-131
    DOI: 10.1016/j.ress.2015.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015003336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CIRJE F-Series CIRJE-F-369, CIRJE, Faculty of Economics, University of Tokyo.
    2. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    3. Garcia-Cabrejo, Oscar & Valocchi, Albert, 2014. "Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 25-36.
    4. Christian Genest & Jean‐François Quessy & Bruno Rémillard, 2006. "Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366, June.
    5. E. Borgonovo & S. Tarantola & E. Plischke & M. D. Morris, 2014. "Transformations and invariance in the sensitivity analysis of computer experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 925-947, November.
    6. Campbell, Katherine & McKay, Michael D. & Williams, Brian J., 2006. "Sensitivity analysis when model outputs are functions," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1468-1472.
    7. Manel Baucells & Emanuele Borgonovo, 2013. "Invariant Probabilistic Sensitivity Analysis," Management Science, INFORMS, vol. 59(11), pages 2536-2549, November.
    8. Borgonovo, E. & Zentner, I. & Pellegri, A. & Tarantola, S. & de Rocquigny, E., 2013. "On the importance of uncertain factors in seismic fragility assessment," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 66-76.
    9. Liu, Qiao & Homma, Toshimitsu, 2009. "A new computational method of a moment-independent uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1205-1211.
    10. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    11. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kaichao & Lu, Zhenzhou & Cheng, Kai & Wang, Laijun & Guo, Yanling, 2020. "Global sensitivity analysis for multivariate output model and dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Ismael Ahrazem Dfuf & José Manuel Mira McWilliams & María Camino González Fernández, 2019. "Multi-Output Conditional Inference Trees Applied to the Electricity Market: Variable Importance Analysis," Energies, MDPI, vol. 12(6), pages 1-24, March.
    3. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.
    5. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    6. Yicheng Zhou & Zhenzhou Lu & Yan Shi & Kai Cheng, 2019. "A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output," Journal of Risk and Reliability, , vol. 233(3), pages 338-354, June.
    7. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    8. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
    9. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    10. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
    3. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    4. Zhang, Kaichao & Lu, Zhenzhou & Cheng, Kai & Wang, Laijun & Guo, Yanling, 2020. "Global sensitivity analysis for multivariate output model and dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    6. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    7. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    8. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    9. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
    10. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    11. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    12. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    13. Di Maio, Francesco & Nicola, Giancarlo & Borgonovo, Emanuele & Zio, Enrico, 2016. "Invariant methods for an ensemble-based sensitivity analysis of a passive containment cooling system of an AP1000 nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 12-19.
    14. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    16. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.
    17. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    18. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    19. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    20. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:123-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.