IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007104.html
   My bibliography  Save this article

The soccer game, bit by bit: An information-theoretic analysis

Author

Listed:
  • Pereira, Luis Ramada
  • Lopes, Rui J.
  • Louçã, Jorge
  • Araújo, Duarte
  • Ramos, João

Abstract

In this article, we present an original method to measure the rate of positional change observed during a soccer match based on the relative spatial distribution of players on the pitch. This is justified as players use their relative position as a key tactical tool to contribute to their team’s objectives. A temporal network representation of the game was used, where nodes are players discretely clustered by physical proximity into disjoint clusters. This study, observational and descriptive in nature, was applied to a set of matches from a major European national football league, with players’ coordinates sampled at 10Hz, resulting in ≈ 60,000 network samples per match. We took an information theoretic approach to measuring the distance between successive samples. Significant correlations were found between measurements and key match events that are empirically known to result in players jostling for position, such as when striving to get unmarked or to mark. These events increase the information distance between samples, while breaks in game play have the opposite effect. Having a measurement of dynamic, structural change in soccer is an original contribution that can complement full match statistical analysis. Hierarchical decomposition of the measurements is possible at multiple levels, building an overall multi-layer map that provides insights into the game dynamics, from the individual player, to the clusters of interacting players, up to the teams and their matches. This comprehensive view of the players’ interacting behavior can be useful for training, tactics and strategy development.

Suggested Citation

  • Pereira, Luis Ramada & Lopes, Rui J. & Louçã, Jorge & Araújo, Duarte & Ramos, João, 2021. "The soccer game, bit by bit: An information-theoretic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007104
    DOI: 10.1016/j.chaos.2021.111356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio A Casal & Rubén Maneiro & Toni Ardá & José L Losada & Antonio Rial, 2015. "Analysis of Corner Kick Success in Elite Football," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 15(2), pages 430-451, August.
    2. Craig Pulling & Matthew Robins & Thomas Rixon, 2013. "Defending Corner Kicks: Analysis from the English Premier League," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 13(1), pages 135-148, April.
    3. Yuji Yamamoto & Keiko Yokoyama, 2011. "Common and Unique Network Dynamics in Football Games," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-6, December.
    4. Ramos, João Paulo & Lopes, Rui J. & Araújo, Duarte, 2020. "Interactions between soccer teams reveal both design and emergence: Cooperation, competition and Zipf-Mandelbrot regularity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. José Gama & Pedro Passos & Keith Davids & Hugo Relvas & João Ribeiro & Vasco Vaz & Gonçalo Dias, 2014. "Network analysis and intra-team activity in attacking phases of professional football," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 14(3), pages 692-708, December.
    7. Adam Hewitt & Grace Greenham & Kevin Norton, 2016. "Game style in soccer: what is it and can we quantify it?," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 16(1), pages 355-372, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Maneiro & Claudio A Casal & Antonio Ardá & José Luís Losada, 2019. "Application of multivariant decision tree technique in high performance football: The female and male corner kick," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    2. Sergio Caicedo-Parada & Carlos Lago-Peñas & Enrique Ortega-Toro, 2020. "Passing Networks and Tactical Action in Football: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    3. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    4. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    5. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    6. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    8. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    10. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    11. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    12. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    13. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    14. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    15. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    16. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    17. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    19. Marek Obrębalski & Marek Walesiak, 2015. "Functional structure of Polish regions in the period 2004-2013 – measurement via HHI Index, Florence’s coefficient of localization and cluster analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 223-242, June.
    20. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.