IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921005452.html
   My bibliography  Save this article

Synchronization problem for a class of multi-input multi-output systems with terminal sliding mode control based on finite-time disturbance observer: Application to Chameleon chaotic system

Author

Listed:
  • Aslmostafa, Ehsan
  • Mirzaei, Mohammad Javad
  • Asadollahi, Mostafa
  • Badamchizadeh, Mohammad Ali

Abstract

This paper studies the synchronization problem of two nonlinear multi-input multi-output (MIMO) systems in finite-time period. For this purpose, a terminal sliding mode controller (TSMC) with a finite-time disturbance observer (FTDO) is employed. Using an FTDO, in a finite time interval, the disturbance parameters precisely can be identified which produce a better transient performance compared to the Lyapunov parameter estimation (LPE) method. Unlike previous literature, the imposed restrictions over external disturbances have been relaxed, i.e., the upper bounds of disturbances and the restrictive condition over the disturbances’ first derivatives have been removed. According to the proposed FTDO, a continuous control input is developed that eliminates chattering in synchronization of nonlinear MIMO master-slave system; as a result, a chattering-free TSMC is attained which makes the synchronization errors converge to the origin in finite-time period. By means of the Lyapunov function (CLF), the stability of the introduced TSMC and the FTDO are proved. Finally, in the simulation section, the efficiency and the accuracy of the proposed approach are revealed by applying the proposed method on a Chameleon master-slave chaotic flow.

Suggested Citation

  • Aslmostafa, Ehsan & Mirzaei, Mohammad Javad & Asadollahi, Mostafa & Badamchizadeh, Mohammad Ali, 2021. "Synchronization problem for a class of multi-input multi-output systems with terminal sliding mode control based on finite-time disturbance observer: Application to Chameleon chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005452
    DOI: 10.1016/j.chaos.2021.111191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kening Li & Jianyong Cao & Fan Yu, 2013. "Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, August.
    2. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    3. Karthikeyan Rajagopal & Anitha Karthikeyan & Prakash Duraisamy, 2017. "Hyperchaotic Chameleon: Fractional Order FPGA Implementation," Complexity, Hindawi, vol. 2017, pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Marius-F. Danca, 2020. "Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order," Papers 2008.12108, arXiv.org, revised Sep 2020.
    4. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    6. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    7. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    8. Kingni, Sifeu Takougang & Jafari, Sajad & Pham, Viet-Thanh & Woafo, Paul, 2017. "Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 172-182.
    9. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    10. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    11. Zhusubaliyev, Zhanybai T. & Mosekilde, Erik, 2015. "Multistability and hidden attractors in a multilevel DC/DC converter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 32-45.
    12. Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
    13. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    15. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    16. Mobayen, Saleh & Alattas, Khalid A. & Fekih, Afef & El-Sousy, Fayez F.M. & Bakouri, Mohsen, 2022. "Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Bin Li & Jiahao Zhu & Ranran Zhou & Guoxing Wen, 2022. "Adaptive Neural Network Sliding Mode Control for a Class of SISO Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    18. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.
    19. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    20. Xiong Wang & Viet-Thanh Pham & Christos Volos, 2017. "Dynamics, Circuit Design, and Synchronization of a New Chaotic System with Closed Curve Equilibrium," Complexity, Hindawi, vol. 2017, pages 1-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.