IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/523251.html
   My bibliography  Save this article

Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control

Author

Listed:
  • Kening Li
  • Jianyong Cao
  • Fan Yu

Abstract

An improved type of control strategy combining the fractional calculus with nonsingular terminal sliding mode control named non-singular fractional terminal sliding mode control (NFOTSM) is proposed for the nonlinear tire-road friction control system of vehicle in this paper. A fractional-order switching manifold is proposed, and the corresponding control law is formulated based on the Lyapunov stability theory to guarantee the sliding condition. The proposed controller ensures the finite time stability of the closed-loop system. Then, a terminal attractor is introduced to solve the singularity problem of fractional terminal sliding mode control (FOTSM). Finally, the performance of the NFOTSM is fully investigated compared with other related algorithms to find the effectiveness for the tire-road friction system. The results show that the NFOTSM has better performance than other related algorithms.

Suggested Citation

  • Kening Li & Jianyong Cao & Fan Yu, 2013. "Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, August.
  • Handle: RePEc:hin:jnlmpe:523251
    DOI: 10.1155/2013/523251
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/523251.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/523251.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/523251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aslmostafa, Ehsan & Mirzaei, Mohammad Javad & Asadollahi, Mostafa & Badamchizadeh, Mohammad Ali, 2021. "Synchronization problem for a class of multi-input multi-output systems with terminal sliding mode control based on finite-time disturbance observer: Application to Chameleon chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Bin Li & Jiahao Zhu & Ranran Zhou & Guoxing Wen, 2022. "Adaptive Neural Network Sliding Mode Control for a Class of SISO Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    3. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    4. Baoyu Huo & Mingjun Du & Zhiguo Yan, 2023. "Adaptive Sliding Mode Attitude Tracking Control for Rigid Spacecraft Considering the Unwinding Problem," Mathematics, MDPI, vol. 11(20), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:523251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.