IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4609834.html
   My bibliography  Save this article

Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities

Author

Listed:
  • Emile Franc Doungmo Goufo
  • Sunil Kumar

Abstract

After the recent introduction of the Caputo-Fabrizio derivative by authors of the same names, the question was raised about an eventual comparison with the old version, namely, the Caputo derivative. Unlike Caputo derivative, the newly introduced Caputo-Fabrizio derivative has no singular kernel and the concern was about the real impact of this nonsingularity on real life nonlinear phenomena like those found in shallow water waves. In this paper, a nonlinear Sawada-Kotera equation, suitable in describing the behavior of shallow water waves, is comprehensively analyzed with both types of derivative. In the investigations, various fixed-point theories are exploited together with the concept of Piccard -stability. We are then able to obtain the existence and uniqueness results for the models with both versions of derivatives. We conclude the analysis by performing some numerical approximations with both derivatives and graphical simulations being presented for some values of the derivative order Similar behaviors are pointed out and they concur with the expected multisoliton solutions well known for the Sawada-Kotera equation. This great observation means either of both derivatives is suitable to describe the motion of shallow water waves.

Suggested Citation

  • Emile Franc Doungmo Goufo & Sunil Kumar, 2017. "Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, February.
  • Handle: RePEc:hin:jnlmpe:4609834
    DOI: 10.1155/2017/4609834
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/4609834.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/4609834.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4609834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    2. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4609834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.