IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8405978.html
   My bibliography  Save this article

Exact Analysis and Physical Realization of the 6-Lobe Chua Corsage Memristor

Author

Listed:
  • Zubaer I. Mannan
  • Changju Yang
  • Shyam P. Adhikari
  • Hyongsuk Kim

Abstract

A novel generic memristor, dubbed the 6-lobe Chua corsage memristor , is proposed with its nonlinear dynamical analysis and physical realization. The proposed corsage memristor contains four asymptotically stable equilibrium points on its complex and diversified dynamic routes which reveals a 4-state nonlinear memory device . The higher degree of versatility of its dynamic routes reveal that the proposed memristor has a variety of dynamic paths in response to different initial conditions and exhibits a highly nonlinear contiguous DC V - I curve. The DC V - I curve of the proposed memristor is endowed with an explicit analytical parametric representation . Moreover, the derived three formulas , exponential trajectories of state , time period , and minimum pulse amplitude , are required to analyze the movement of the state trajectories on the piecewise linear (PWL) dynamic route map (DRM) of the corsage memristor. These formulas are universal, that is, applicable to any PWL DRM curves for any DC or pulse input and with any number of segments . Nonlinear dynamics and circuit and system theoretic approach are employed to explain the asymptotic quad-stable behavior of the proposed corsage memristor and to design a novel real memristor emulator using off-the-shelf circuit components.

Suggested Citation

  • Zubaer I. Mannan & Changju Yang & Shyam P. Adhikari & Hyongsuk Kim, 2018. "Exact Analysis and Physical Realization of the 6-Lobe Chua Corsage Memristor," Complexity, Hindawi, vol. 2018, pages 1-21, November.
  • Handle: RePEc:hin:complx:8405978
    DOI: 10.1155/2018/8405978
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/8405978.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/8405978.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8405978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Li, Zhijun & Chen, Kaijie, 2023. "Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8405978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.