Periodic measures of impulsive stochastic differential equations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2021.111035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Xiaodi & Shen, Jianhua & Rakkiyappan, R., 2018. "Persistent impulsive effects on stability of functional differential equations with finite or infinite delay," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 14-22.
- Mao, Xuerong, 1996. "Razumikhin-type theorems on exponential stability of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 233-250, December.
- Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
- Han, Qixing & Jiang, Daqing, 2015. "Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 204-217.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Jiangtao, 2022. "Periodic measure of a stochastic non-autonomous predator–prey system with impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 464-479.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
- Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
- Zhao, Shiyi & Pan, Yingnan & Du, Peihao & Liang, Hongjing, 2020. "Adaptive control for non-affine nonlinear systems with input saturation and output dead zone," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
- Khieu, Hoang & Wälde, Klaus, 2023.
"Capital income risk and the dynamics of the wealth distribution,"
Economic Modelling, Elsevier, vol. 122(C).
- Khieu, Hoang & Wälde, Klaus, 2018. "Capital Income Risk and the Dynamics of the Wealth Distribution," IZA Discussion Papers 11840, Institute of Labor Economics (IZA).
- Hoang Khieu & Klaus Wälde, 2018. "Capital Income Risk and the Dynamics of the Wealth Distribution," Working Papers 1814, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
- Hoang Khieu & Klaus Wälde, 2019. "Capital Income Risk and the Dynamics of the Wealth Distribution," CESifo Working Paper Series 7970, CESifo.
- Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Qi Wang & Huabin Chen & Chenggui Yuan, 2022. "A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations," Mathematics, MDPI, vol. 10(6), pages 1-11, March.
- Wälde, Klaus & Bayer, Christian, 2011.
"Describing the Dynamics of Distribution in Search and Matching Models by Fokker-Planck Equations,"
VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis
48736, Verein für Socialpolitik / German Economic Association.
- Christian Bayer & Klaus Waelde, 2011. "Describing the Dynamics of Distributions in Search and Matching Models by Fokker-Planck Equations," Working Papers 1110, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 21 Jul 2011.
- Natalya O. Sedova & Olga V. Druzhinina, 2023. "Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
- Zhu, Sanmei & Feng, Jun-e, 2021. "The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach," Applied Mathematics and Computation, Elsevier, vol. 402(C).
- Udom, Akaninyene Udo, 2012. "Exponential stabilization of stochastic interval system with time dependent parameters," European Journal of Operational Research, Elsevier, vol. 222(3), pages 523-528.
- Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
- Yang, Xueyan & Peng, Dongxue & Lv, Xiaoxiao & Li, Xiaodi, 2019. "Recent progress in impulsive control systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 244-268.
- He, Xinyi & Wang, Yuhan & Li, Xiaodi, 2021. "Uncertain impulsive control for leader-following synchronization of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Chunxiang Li & Fangshu Hui & Fangfei Li, 2023. "Stability of Differential Systems with Impulsive Effects," Mathematics, MDPI, vol. 11(20), pages 1-23, October.
- Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
- Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
- Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
More about this item
Keywords
Periodic measure; Nonlinear impulse; Stochastic; Logistic equation; Neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003891. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.