IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304641.html
   My bibliography  Save this article

Adaptive control for non-affine nonlinear systems with input saturation and output dead zone

Author

Listed:
  • Zhao, Shiyi
  • Pan, Yingnan
  • Du, Peihao
  • Liang, Hongjing

Abstract

This paper disposes of the problem of adaptive dynamic surface control for non-affine nonlinear systems. The full state constraints, output dead zone and input saturation are fully considered in the controlled system. Invariant sets are used for a continuous and semi-bounded condition of non-affine functions. The “complexity explosion” issue caused by backstepping procedure is avoided via the dynamic surface control method. A Nussbaum function is used to handle the unknown control coefficient derived from the output dead zone, and barrier Lyapunov functions are employed to handle full state constraints. To counteract the effects of disturbance and uncertainty, the robust compensator is constructed. In addition, it is proved that all signals in the system are bounded and all states satisfy their constraints. Finally, the simulation results show the effectiveness of the proposed method.

Suggested Citation

  • Zhao, Shiyi & Pan, Yingnan & Du, Peihao & Liang, Hongjing, 2020. "Adaptive control for non-affine nonlinear systems with input saturation and output dead zone," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304641
    DOI: 10.1016/j.amc.2020.125506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Wang, Fang, 2019. "Adaptive neural control of non-strict feedback system with actuator failures and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Xi, Changjiang & Dong, Jiuxiang, 2019. "Adaptive fuzzy guaranteed performance control for uncertain nonlinear systems with event-triggered input," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Li, Xiaodi & Shen, Jianhua & Rakkiyappan, R., 2018. "Persistent impulsive effects on stability of functional differential equations with finite or infinite delay," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 14-22.
    4. Li, Xiaodi & Yang, Xueyan & Huang, Tingwen, 2019. "Persistence of delayed cooperative models: Impulsive control method," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 130-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Xu, Bo & Liang, Yanjun & Li, Yuan-Xin & Hou, Zhongsheng, 2022. "Adaptive command filtered fixed-time control of nonlinear systems with input quantization," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    3. Peng, Yanru & Xu, Shengyuan, 2023. "Adaptive tracking control for a class of stochastic nonlinear systems with full-state constraints and dead-zone," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Bei Zhang & Yonghui Xia & Lijuan Zhu & Haidong Liu & Longfei Gu, 2019. "Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach," Mathematics, MDPI, vol. 7(8), pages 1-10, August.
    3. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    4. Xiongrui Wang & Ruofeng Rao & Shouming Zhong, 2020. "p th Moment Stability of a Stationary Solution for a Reaction Diffusion System with Distributed Delays," Mathematics, MDPI, vol. 8(2), pages 1-10, February.
    5. He, Xinyi & Wang, Yuhan & Li, Xiaodi, 2021. "Uncertain impulsive control for leader-following synchronization of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Zhu, Chenhong & Li, Xiaodi & Wang, Kening, 2020. "An anti-windup approach for nonlinear impulsive system subject to actuator saturation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Ning, Di & Chen, Juan & Jiang, Meiying, 2022. "Pinning impulsive synchronization of two-layer heterogeneous delayed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    8. Cao, Jing & Fan, Jinjun, 2021. "Discontinuous dynamical behaviors in a 2-DOF friction collision system with asymmetric damping," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Xiaodi Li & A. Vinodkumar & T. Senthilkumar, 2019. "Exponential Stability Results on Random and Fixed Time Impulsive Differential Systems with Infinite Delay," Mathematics, MDPI, vol. 7(9), pages 1-22, September.
    10. Yujuan Tian & Yuhan Yin & Fei Wang & Kening Wang, 2022. "Impulsive Control of Complex-Valued Neural Networks with Mixed Time Delays and Uncertainties," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    11. Ruofeng Rao, 2019. "Global Stability of a Markovian Jumping Chaotic Financial System with Partially Unknown Transition Rates under Impulsive Control Involved in the Positive Interest Rate," Mathematics, MDPI, vol. 7(7), pages 1-15, June.
    12. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Zada, Akbar & Pervaiz, Bakhtawar & Subramanian, Muthaiah & Popa, Ioan-Lucian, 2022. "Finite time stability for nonsingular impulsive first order delay differential systems," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    14. Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Li, Dingshi & Lin, Yusen, 2021. "Periodic measures of impulsive stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    16. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    18. Yang, Yang & Xi, Xiaorui & Miao, Songtao & Wu, Jinran, 2022. "Event-triggered output feedback containment control for a class of stochastic nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    19. Zhu, Sanmei & Feng, Jun-e, 2021. "The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    20. Gani Stamov & Ivanka Stamova, 2019. "Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds," Mathematics, MDPI, vol. 7(11), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.