IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v262y2015icp204-217.html
   My bibliography  Save this article

Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem

Author

Listed:
  • Han, Qixing
  • Jiang, Daqing

Abstract

The paper characterizes some qualitative dynamic properties of a stochastic non-autonomous multi-species mutualism model, with continuous periodic parameters. Using Khasminskii theory of stability with suitable Lyapunov functions, and M-Matrices, sufficient conditions are established to guarantee existence of positive periodic solutions to the system. We also provide conditions for the global attractiveness of the latter, or extinction of all species for sufficiently high volatility levels. Results are finally supported by numerical computations.

Suggested Citation

  • Han, Qixing & Jiang, Daqing, 2015. "Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 204-217.
  • Handle: RePEc:eee:apmaco:v:262:y:2015:i:c:p:204-217
    DOI: 10.1016/j.amc.2015.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315005007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hui & Li, Yingqi & Jing, Bin & Zhao, Weizhou, 2014. "Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1138-1150.
    2. Wu, Haihui & Xia, Yonghui & Lin, Muren, 2008. "Existence of positive periodic solution of mutualism system with several delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 487-493.
    3. Mandal, Partha Sarathi & Banerjee, Malay, 2012. "Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1216-1233.
    4. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinhong & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2016. "Periodic solutions and stationary distribution of mutualism models in random environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 270-282.
    2. Jiang, Daqing & Zuo, Wenjie & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Stationary distribution and periodic solutions for stochastic Holling–Leslie predator–prey systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 16-28.
    3. Jiang, Daqing & Zhang, Qiumei & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Periodic solution for a stochastic non-autonomous competitive Lotka–Volterra model in a polluted environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 276-287.
    4. Li, Dingshi & Lin, Yusen, 2021. "Periodic measures of impulsive stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Debasis Mukherjee, 2022. "Stochastic Analysis of an Eco-Epidemic Model with Biological Control," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2539-2555, December.
    3. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    4. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    5. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    6. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Xinhong Zhang & Daqing Jiang, 2020. "Periodic Solutions of a Stochastic Food-Limited Mutualism Model," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 267-278, March.
    8. Jana, Debaldev & Banerjee, Aniket & Samanta, G.P., 2017. "Degree of prey refuges: Control the competition among prey and foraging ability of predator," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 350-362.
    9. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    10. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    11. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    12. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    13. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    14. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    15. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    16. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    17. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    18. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    19. Liu, Meng & Bai, Chuanzhi, 2015. "A remark on a stochastic logistic model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 521-526.
    20. Liu, Meng & Wang, Ke, 2013. "Dynamics and simulations of a logistic model with impulsive perturbations in a random environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 53-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:262:y:2015:i:c:p:204-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.