IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919304230.html
   My bibliography  Save this article

Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system

Author

Listed:
  • Khan, Hasib
  • Khan, Aziz
  • Jarad, Fahd
  • Shah, Anwar

Abstract

The study of existence of solution ensures the essential conditions required for a solution. Keeping the importance of the study, we initiate the existence, uniqueness and data dependence of solutions an Atangana-Baleanu-Caputo (ABC)-fractional order differential impulsive system. For this purpose, the suggested ABC-fractional order differential impulsive system is transferred into equivalent fixed point problem via integral operator. The operator is then analyzed for boundedness, continuity and equicontinuity. Then Arzela-Ascolli theorem ensures the relatively compactness of the operator and the Schauder’s fixed point theorem and Banach’s fixed point theorem are utilized for the existence and uniqueness of solution. Data dependence and expressive application are also provided.

Suggested Citation

  • Khan, Hasib & Khan, Aziz & Jarad, Fahd & Shah, Anwar, 2020. "Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304230
    DOI: 10.1016/j.chaos.2019.109477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdeljawad, Thabet & Al-Mdallal, Qasem M. & Jarad, Fahd, 2019. "Fractional logistic models in the frame of fractional operators generated by conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 94-101.
    2. Jarad, Fahd & Abdeljawad, Thabet & Hammouch, Zakia, 2018. "On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 16-20.
    3. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    4. Alqahtani, Badr & Fulga, Andreea & Jarad, Fahd & Karapınar, Erdal, 2019. "Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 349-354.
    5. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullahi, Auwal, 2021. "Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BİLDİK, Necdet & DENİZ, Sinan & SAAD, Khaled M., 2020. "A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Bedi, Pallavi & Kumar, Anoop & Khan, Aziz, 2021. "Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    8. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    11. Nisar, Kottakkaran Sooppy & Logeswari, K. & Ravichandran, C. & Sabarinathan, S., 2023. "New frame of fractional neutral ABC-derivative with IBC and mixed delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    12. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    13. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    15. Kucche, Kishor D. & Sutar, Sagar T., 2021. "Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    17. Sutar, Sagar T. & Kucche, Kishor D., 2021. "On Nonlinear Hybrid Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
    19. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.