IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010865.html
   My bibliography  Save this article

Event-based predefined-time anti-synchronization for unified chaotic systems and the application to Chua’s circuit

Author

Listed:
  • Ma, Jiawei
  • Zhang, Huaguang
  • Zhang, Juan
  • Wang, Le

Abstract

This paper studies the predefined-time anti-synchronization control problem of unified chaotic systems via event-triggered mechanism. The purpose of this research is to design an anti-synchronization control strategy that enables unified chaotic systems to achieve predefined-time control while saving communication resources. In the process of designing control strategy, the event-triggered mechanism is employed to design controller to minimize the communication burden. The adaptive backstepping control method is applied to approximate the uncertain parameter of the considered systems and the piecewise function is introduced to avoid the singularity problem. With the help of predefined-time control theoretics, two event-based adaptive predefined-time controllers are designed that can achieve anti-synchronization of unified chaotic systems. Unlike existing researches on unified chaotic systems, this paper can achieve precise control of convergence time by utilizing predefined-time control theory. Ultimately, simulation results can verify the validity of the suggested control method.

Suggested Citation

  • Ma, Jiawei & Zhang, Huaguang & Zhang, Juan & Wang, Le, 2024. "Event-based predefined-time anti-synchronization for unified chaotic systems and the application to Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010865
    DOI: 10.1016/j.chaos.2024.115534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheqi Yu & Peter X. Liu & Song Ling & Huanqing Wang, 2024. "Adaptive finite-time synchronisation of variable-order fractional chaotic systems for secure communication," International Journal of Systems Science, Taylor & Francis Journals, vol. 55(2), pages 317-331, January.
    2. Li, Ruihong & Xu, Wei & Li, Shuang, 2009. "Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1288-1296.
    3. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    5. Shirkavand, Mehrdad & Pourgholi, Mahdi & Yazdizadeh, Alireza, 2022. "Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    6. Sweetha, S. & Sakthivel, R. & Harshavarthini, S., 2021. "Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Luo, Runzi & Liu, Shuai & Song, Zijun & Zhang, Fang, 2023. "Fixed-time control of a class of fractional-order chaotic systems via backstepping method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Stabilization of a class of fractional order chaotic systems via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 56-62.
    9. Abdesselem Boulkroune & Sarah Hamel & Farouk Zouari & Abdelkrim Boukabou & Asier Ibeas, 2017. "Output-Feedback Controller Based Projective Lag-Synchronization of Uncertain Chaotic Systems in the Presence of Input Nonlinearities," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-12, March.
    10. Zongyu Zuo & Lin Tie, 2016. "Distributed robust finite-time nonlinear consensus protocols for multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1366-1375, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    2. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Luo, Runzi & Song, Zijun & Liu, Shuai, 2023. "Fixed-time observed synchronization of chaotic system with all state variables unavailable in some periods," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Cai, Xinshan & Liu, Ling & Wang, Yaoyu & Liu, Chongxin, 2021. "A 3D chaotic system with piece-wise lines shape non-hyperbolic equilibria and its predefined-time control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Runzi Luo & Meichun Huang & Haipeng Su, 2019. "Robust Control and Synchronization of 3-D Uncertain Fractional-Order Chaotic Systems with External Disturbances via Adding One Power Integrator Control," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    9. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    10. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    11. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    12. Gao, Shuo & Wen, Guoguang & Zhai, Xiaoqin & Zheng, Peng, 2023. "Finite-/fixed-time bipartite consensus for first-order multi-agent systems via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    13. Zhiyong Luo & Hongliang Liu & Zigen Ouyang, 2023. "Fixed-Time Formation Tracking Control of Nonlinear Multi-Agent Systems with Directed Topology and Disturbance," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    14. Shafaat Ullah & Laiq Khan & Irfan Sami & Ghulam Hafeez & Fahad R. Albogamy, 2021. "A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids," Energies, MDPI, vol. 14(24), pages 1-23, December.
    15. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.
    16. Jia, Wenwen & Xie, Jingu & Guo, Haihua & Wu, Yongbao, 2024. "Intermittent boundary control for fixed-time stability of reaction–diffusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Xing, Ying & He, Xinyi & Li, Xiaodi, 2023. "Lyapunov conditions for finite-time stability of disturbed nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    18. Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Runze Chen & Zhenling Wang & Weiwei Che, 2022. "Adaptive Sliding Mode Attitude-Tracking Control of Spacecraft with Prescribed Time Performance," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    20. Yilun Shang & Yamei Ye, 2017. "Leader-Follower Fixed-Time Group Consensus Control of Multiagent Systems under Directed Topology," Complexity, Hindawi, vol. 2017, pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.