IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v273y2016icp948-956.html
   My bibliography  Save this article

On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation

Author

Listed:
  • Atangana, Abdon

Abstract

Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order.

Suggested Citation

  • Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
  • Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:948-956
    DOI: 10.1016/j.amc.2015.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315013533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alquran, Marwan & Al-Khaled, Kamel & Sardar, Tridip & Chattopadhyay, Joydev, 2015. "Revisited Fisher’s equation in a new outlook: A fractional derivative approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 81-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Han, Yuxin & Huang, Xin & Gu, Wei & Zheng, Bolong, 2023. "Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Muhammed I. Syam, 2017. "A Numerical Solution of Fractional Lienard’s Equation by Using the Residual Power Series Method," Mathematics, MDPI, vol. 6(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:948-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.