IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002175.html
   My bibliography  Save this article

Active disturbance rejection control to stabilization of coupled delayed time fractional-order reaction–advection–diffusion systems with boundary disturbances and spatially varying coefficients

Author

Listed:
  • Chen, Juan
  • Zhou, Hua-Cheng
  • Zhuang, Bo
  • Xu, Ming-Hua

Abstract

In this paper we consider the boundary asymptotic stabilization of a coupled time fractional-order reaction–advection–diffusion (FRAD) system with boundary input disturbances, spatially varying coefficients and time varying delays. The complex system composition makes it difficult to analyze system property directly. For this issue, we here address it by introducing two transformations to convert the original system into the one where theories of fractional evolution equations and operator semigroup are easily applicable. The active disturbance rejection control (ADRC) and backstepping control are also utilized in investigation. Using ADRC, the disturbance is first estimated by constructing two auxiliary systems and then canceled through an approximation in the feedback-loop. For such auxiliary systems, one is used to take disturbances from the original system and to put them into a stable system. Another is used to estimate disturbances. In the second part, we use backstepping to develop a boundary state feedback control law with disturbance approximation to ’eliminate’ the disturbances and to achieve the closed-loop stability. The well-posedness and disturbance estimation are established by theories of fractional evolution equations. With fractional Halanay’s inequality, sufficient conditions are obtained to make the controlled system asymptotically stable and the auxiliary system bounded. Fractional simulation scheme is constructed to test the proposed synthesis generated by ADRC when the explicit solution of kernel equations does not exist.

Suggested Citation

  • Chen, Juan & Zhou, Hua-Cheng & Zhuang, Bo & Xu, Ming-Hua, 2023. "Active disturbance rejection control to stabilization of coupled delayed time fractional-order reaction–advection–diffusion systems with boundary disturbances and spatially varying coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002175
    DOI: 10.1016/j.chaos.2023.113316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Chen & Bo Zhuang & Yajuan Yu, 2022. "Asymptotic stabilisation of coupled delayed time fractional reaction diffusion systems with boundary input disturbances via backstepping sliding-mode control," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(14), pages 3112-3130, October.
    2. Gafiychuk, V.V. & Datsko, B.Yo., 2006. "Pattern formation in a fractional reaction–diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 300-306.
    3. Chen, Boshan & Chen, Jiejie, 2015. "Razumikhin-type stability theorems for functional fractional-order differential systems and applications," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 63-69.
    4. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    2. Aghayan, Zahra Sadat & Alfi, Alireza & Mousavi, Yashar & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Guaranteed cost robust output feedback control design for fractional-order uncertain neutral delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Zhang, Lingzhong & Yang, Yongqing & Wang, Fei, 2017. "Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 402-415.
    4. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2022. "Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
    5. Ning, Jinghua & Hua, Changchun, 2022. "H∞ output feedback control for fractional-order T-S fuzzy model with time-delay," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    6. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Fei Qi & Yi Chai & Liping Chen & José A. Tenreiro Machado, 2020. "Delay-Dependent and Order-Dependent Guaranteed Cost Control for Uncertain Fractional-Order Delayed Linear Systems," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    8. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    9. Sakthivel, R. & Sweetha, S. & Tatar, N.E. & Panneerselvam, V., 2023. "Delayed reset control design for uncertain fractional-order systems with actuator faults via dynamic output feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    11. Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
    12. Peng, Qiu & Jian, Jigui, 2023. "Asymptotic synchronization of second-fractional -order fuzzy neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    14. Gafiychuk, V. & Datsko, B. & Meleshko, V. & Blackmore, D., 2009. "Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1095-1104.
    15. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    16. Yao, Xueqi & Zhong, Shouming, 2021. "EID-based robust stabilization for delayed fractional-order nonlinear uncertain system with application in memristive neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
    18. Li, Hong-Li & Jiang, Yao-Lin & Wang, Zuolei & Zhang, Long & Teng, Zhidong, 2015. "Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 269-277.
    19. Cai, Rui-Yang & Cheng, Lan & Zhou, Hua-Cheng, 2024. "Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Wang, Fei & Zheng, Zhaowen & Yang, Yongqing, 2021. "Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.