Active disturbance rejection control to stabilization of coupled delayed time fractional-order reaction–advection–diffusion systems with boundary disturbances and spatially varying coefficients
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.113316
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Juan Chen & Bo Zhuang & Yajuan Yu, 2022. "Asymptotic stabilisation of coupled delayed time fractional reaction diffusion systems with boundary input disturbances via backstepping sliding-mode control," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(14), pages 3112-3130, October.
- Gafiychuk, V.V. & Datsko, B.Yo., 2006. "Pattern formation in a fractional reaction–diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 300-306.
- Chen, Boshan & Chen, Jiejie, 2015. "Razumikhin-type stability theorems for functional fractional-order differential systems and applications," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 63-69.
- Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
- Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2022. "Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
- Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
- Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
- Peng, Qiu & Jian, Jigui, 2023. "Asymptotic synchronization of second-fractional -order fuzzy neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
- Wang, Fei & Zheng, Zhaowen & Yang, Yongqing, 2021. "Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Shafiya, M. & Nagamani, G. & Dafik, D., 2022. "Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 168-186.
- Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Mittag-Leffler stabilization of fractional infinite dimensional systems with finite dimensional boundary controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1176-1185.
- Aghayan, Zahra Sadat & Alfi, Alireza & Mousavi, Yashar & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Guaranteed cost robust output feedback control design for fractional-order uncertain neutral delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Zhang, Lingzhong & Yang, Yongqing & Wang, Fei, 2017. "Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 402-415.
- Ning, Jinghua & Hua, Changchun, 2022. "H∞ output feedback control for fractional-order T-S fuzzy model with time-delay," Applied Mathematics and Computation, Elsevier, vol. 416(C).
- Fei Qi & Yi Chai & Liping Chen & José A. Tenreiro Machado, 2020. "Delay-Dependent and Order-Dependent Guaranteed Cost Control for Uncertain Fractional-Order Delayed Linear Systems," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
- Sakthivel, R. & Sweetha, S. & Tatar, N.E. & Panneerselvam, V., 2023. "Delayed reset control design for uncertain fractional-order systems with actuator faults via dynamic output feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
- A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
- Gafiychuk, V. & Datsko, B. & Meleshko, V. & Blackmore, D., 2009. "Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1095-1104.
- Yao, Xueqi & Zhong, Shouming, 2021. "EID-based robust stabilization for delayed fractional-order nonlinear uncertain system with application in memristive neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
More about this item
Keywords
Active disturbance rejection control; Stability; Fractional-order reaction–advection–diffusion systems; Backstepping;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.