IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3808-d1534656.html
   My bibliography  Save this article

Degree Distribution of Evolving Network with Node Preference Deletion

Author

Listed:
  • Yue Xiao

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Xiaojun Zhang

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

Abstract

Discussing evolutionary network models and corresponding degree distributions under different mechanisms is applied basic research in network science. This study proposes a new evolutionary network model, which integrates node preference deletion and edge reconnection mechanisms and is also an extension of the existing evolutionary network model. In order to analyze the key statistical property of the model, the steady-state distribution, we propose a Markov chain method based on the enhanced stochastic process rule (ESPR). The ESPR method makes the evolving network’s topological structure and statistical properties consistent with those observed in the natural evolution process, ensures the theoretical results of the degree distribution of the evolving network model, and overcomes the limitations of using empirical methods for approximate analysis. Finally, we verify the accuracy of the steady-state distribution and tail feature estimation of the model through Monte Carlo simulation. This work has laid a solid theoretical foundation for the future development of evolutionary network models and the study of more complex network statistical properties.

Suggested Citation

  • Yue Xiao & Xiaojun Zhang, 2024. "Degree Distribution of Evolving Network with Node Preference Deletion," Mathematics, MDPI, vol. 12(23), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3808-:d:1534656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezaei, Behnam A. & Sarshar, Nima & Roychowdhury, Vwani P. & Boykin, P. Oscar, 2007. "Disaster management in power-law networks: Recovery from and protection against intentional attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 497-514.
    2. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    3. Gilboa-Freedman, Gail & Hassin, Refael, 2016. "When Markov chains meet: A continuous-time model of network evolution," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 131-138.
    4. Li, Xiang & Chen, Guanrong, 2003. "A local-world evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 274-286.
    5. Kong, Joseph S. & Roychowdhury, Vwani P., 2008. "Preferential survival in models of complex ad hoc networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3335-3347.
    6. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    2. Yang, Yu & He, Ze & Song, Zouying & Fu, Xin & Wang, Jianwei, 2018. "Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 755-766.
    3. Guan, Zhi-Hong & Wu, Zheng-Ping, 2008. "The physical position neighbourhood evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 314-322.
    4. Bu, Zhan & Xia, Zhengyou & Wang, Jiandong & Zhang, Chengcui, 2013. "A last updating evolution model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2240-2247.
    5. Huang, Xikun & Lu, Ruqian, 2020. "An evolving network model with information filtering and mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Zhu, Hailin & Luo, Hong & Peng, Haipeng & Li, Lixiang & Luo, Qun, 2009. "Complex networks-based energy-efficient evolution model for wireless sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1828-1835.
    7. Luo, Xiaojuan & Hu, Yuhen & Zhu, Yu, 2014. "Topology evolution model for wireless multi-hop network based on socially inspired mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 639-650.
    8. Chen, Hailiang & Chen, Bin & Ai, Chuan & Zhu, Mengna & Qiu, Xiaogang, 2022. "The evolving network model with community size and distance preferences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    9. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    10. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    11. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    12. Alvarez-Martínez, R. & Cocho, G. & Rodríguez, R.F. & Martínez-Mekler, G., 2014. "Birth and death master equation for the evolution of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 198-208.
    13. Jichao Li & Yuejin Tan & Kewei Yang & Xiaoke Zhang & Bingfeng Ge, 2017. "Structural robustness of combat networks of weapon system-of-systems based on the operation loop," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 659-674, February.
    14. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    15. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    16. Rabbani, Fereshteh & Khraisha, Tamer & Abbasi, Fatemeh & Jafari, Gholam Reza, 2021. "Memory effects on link formation in temporal networks: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    17. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    18. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    19. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    20. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3808-:d:1534656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.