IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119315687.html
   My bibliography  Save this article

Edge attack strategies in interdependent scale-free networks

Author

Listed:
  • Hao, Yucheng
  • Jia, Limin
  • Wang, Yanhui

Abstract

In existing works, the interdependent network reflects the great vulnerability and the study on its robustness is limited to attacks on nodes. Based on the characteristics of the node and interdependent networks, we propose fourteen edge attack strategies by two edge importance functions. Then, interdependent BA networks with assortative coupling(AC), disassortative coupling(DC), and random coupling(RC) are constructed, whose robustness is quantified by the relative size of the giant component under varying a fraction f of removed edges. It is found that in terms of the edge importance function concerning the sum of the information between networks under AC and RC, attack strategies with the harmonic closeness (SH) and the degree (SD) are the most harmful for smaller and bigger f, respectively; Under DC, SH is the most efficient. In terms of the edge importance function concerning the product of the information between networks, the efficiency of the attack strategy with the degree (PD) is the highest under AC with bigger f, DC and RC. Through the comparison of different attack strategies, the results demonstrate that attack strategies with the product of the information between networks are more efficient than the ones with the sum of the information between networks under DC and RC. Furthermore, we find that interdependent BA networks with DC are more vulnerable while the ones with AC are more robust under different edge attack strategies.

Suggested Citation

  • Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119315687
    DOI: 10.1016/j.physa.2019.122759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315687
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre A. Moreira & Jose S. Andrade Jr. & Hans J. Herrmann & Joseph O. Indekeu, "undated". "How to make a fragile network robust and vice versa," Working Papers CCSS-09-001, ETH Zurich, Chair of Systems Design.
    2. Wang, Hui & Huang, Jinyuan & Xu, Xiaomin & Xiao, Yanghua, 2014. "Damage attack on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 134-148.
    3. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    4. Sun, Shiwen & Liu, Zhongxin & Chen, Zengqiang & Yuan, Zhuzhi, 2007. "Error and attack tolerance of evolving networks with local preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 851-860.
    5. Duan, Boping & Liu, Jing & Zhou, Mingxing & Ma, Liangliang, 2016. "A comparative analysis of network robustness against different link attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 144-153.
    6. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    7. Bellingeri, M. & Bevacqua, D. & Scotognella, F. & LU, Zhe-Ming & Cassi, D., 2018. "Efficacy of local attack strategies on the Beijing road complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 316-328.
    8. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    9. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    10. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    11. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    12. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    13. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    14. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    15. Du, Ruijin & Dong, Gaogao & Tian, Lixin & Liu, Runran, 2016. "Targeted attack on networks coupled by connectivity and dependency links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 687-699.
    16. Nie, Tingyuan & Guo, Zheng & Zhao, Kun & Lu, Zhe-Ming, 2015. "New attack strategies for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 248-253.
    17. Yin, Yong & Liu, Qiong & Zhang, Chaoyong & Zhou, Jian, 2019. "Survivability analysis of weighted-edge attacks on complex networks with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    18. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2003. "Efficiency of scale-free networks: error and attack tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 622-642.
    19. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2023. "A multi-objective optimization model for identifying groups of critical elements in a high-speed train," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Zhou, Lili & Yin, Jun & Tan, Fei & Liao, Haibin, 2023. "Robustness analysis of edge-coupled interdependent networks under different attack strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Wenyan Wang & Jun Zhang & Fang Zhou & Peng Chen & Bing Wang, 2021. "Paper acceptance prediction at the institutional level based on the combination of individual and network features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1581-1597, February.
    5. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    2. Sohn, Insoo, 2019. "A robust complex network generation method based on neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 593-601.
    3. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    4. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    5. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    6. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    7. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    8. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Lekha, Divya Sindhu & Balakrishnan, Kannan, 2020. "Central attacks in complex networks: A revisit with new fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    11. Jisha Mariyam John & Michele Bellingeri & Divya Sindhu Lekha & Davide Cassi & Roberto Alfieri, 2023. "Effect of Weight Thresholding on the Robustness of Real-World Complex Networks to Central Node Attacks," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    12. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    14. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    15. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    16. Zhang, Haihong & Wu, Wenqing & Zhao, Liming, 2016. "A study of knowledge supernetworks and network robustness in different business incubators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 545-560.
    17. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    18. Zhang, Tianqiao & Zhang, Yang & Zhu, Xuzhen & Chen, Junliang, 2019. "Cascading failures on interdependent networks with star dependent links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Milena Oehlers & Benjamin Fabian, 2021. "Graph Metrics for Network Robustness—A Survey," Mathematics, MDPI, vol. 9(8), pages 1-48, April.
    20. Iovanella, Antonio, 2024. "Exploiting network science in business process management: A conceptual framework," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119315687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.