IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipas0951832024006604.html
   My bibliography  Save this article

Maximum entropy-based modeling of community-level hazard responses for civil infrastructures

Author

Listed:
  • Chu, Xiaolei
  • Wang, Ziqi

Abstract

Perturbed by natural hazards, community-level infrastructure networks operate like many-body systems, with behaviors emerging from coupling individual component dynamics with group correlations and interactions. It follows that we can borrow methods from statistical physics to study the response of infrastructure systems to natural disasters. This study aims to construct a joint probability distribution model to describe the post-hazard state of infrastructure networks and propose an efficient surrogate model of the joint distribution for large-scale systems. Specifically, we present maximum entropy modeling of the regional impact of natural hazards on civil infrastructures. Provided with the current state of knowledge, the principle of maximum entropy yields the “most unbiased“ joint distribution model for the performances of infrastructures. In the general form, the model can handle multivariate performance states and higher-order correlations. In a particular yet typical scenario of binary performance state variables with knowledge of their mean and pairwise correlation, the joint distribution reduces to the Ising model in statistical physics. In this context, we propose using a dichotomized Gaussian model as an efficient surrogate for the maximum entropy model, facilitating the application to large systems. Using the proposed method, we investigate the seismic collective behavior of a large-scale road network (with 8,694 nodes and 26,964 links) in San Francisco, showcasing the non-trivial collective behaviors of infrastructure systems.

Suggested Citation

  • Chu, Xiaolei & Wang, Ziqi, 2025. "Maximum entropy-based modeling of community-level hazard responses for civil infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006604
    DOI: 10.1016/j.ress.2024.110589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.